OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 2, Iss. 4 — Feb. 16, 1998
  • pp: 157–162

Spontaneous lifetime in a dielectrically-apertured Fabry-Perot microcavity

Q. Deng and D.G. Deppe  »View Author Affiliations

Optics Express, Vol. 2, Issue 4, pp. 157-162 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present calculations of the modification of the spontaneous emission rate from a point source dipole in a Fabry-Perot microcavity containing an optically thin dielectric aperture. The dielectric aperture is described as a passive current source which is driven by the spontaneous point source. The spontaneous emission rate is shown to depend on the details of the aperture design, and shows a strong enhancement on resonance due to 3-dimensional optical confinement by the dielectric aperture.

© Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Focus Issue: Quantum well laser design

Original Manuscript: October 8, 1997
Published: February 16, 1998

Q. Deng and D. Deppe, "Spontaneous lifetime in a dielectrically-apertured Fabry-Perot microcavity," Opt. Express 2, 157-162 (1998)

Sort:  Journal  |  Reset  


  1. D.G. Deppe and C. Lei, "Spontaneous emission from a dipole in a semiconductor microcavity," J. Appl. Phys. 70, 3443-3448 (1991). [CrossRef]
  2. G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, "Modification of spontaneous emission rate in planar dielectric microcavity structures" Phys. Rev. A 44, 669-681 (1991). [CrossRef] [PubMed]
  3. K. Ujihara, "Spontaneous emission and the concept of effective area in a very short cavity with plane parallel dielectric mirrors," Jpn. J. Appl. Phys. , Part 2 30, L901-L903 (1991). [CrossRef]
  4. N. Ochi, T. Shiotani, M. Yaminishi, Y. Honda, and I. Suemune, "Controllable enhancement of excitonic spontaneous emission in quantum microcavities," Appl. Phys. Lett. 58, 2735-2737 (1991). [CrossRef]
  5. D.L. Huffaker, Z. Huang, C. Lei, D.G. Deppe, C.J. Pinzone, J.G. Neff, and R.D. Dupuis, "Controlled spontaneous emission in room temperature semiconductor microcavities," Appl. Phys. Lett. 60, 3202-3205 (1992). [CrossRef]
  6. C.C. Lin, D.G. Deppe, and C. Lei, "Role of waveguide light emission in planar microcavities," IEEE J. Quantum Electron. 30, 2304-2313 (1994). [CrossRef]
  7. G. Bjork, "On the spontaneous lifetime change in an ideal planar microcavity - transition from a mode continuum to quantized modes," IEEE J. Quantum Electron. 30, 2314-2318 (1994). [CrossRef]
  8. C.C. Lin and D.G. Deppe, "Calculation of lifetime dependence of Er3+ on cavity length in dielectric half-wave and full-wave microcavities," J. Appl. Phys. 75, 4668-4672 (1994). [CrossRef]
  9. Q. Deng and D.G. Deppe, "Spontaneous-emission coupling from multiemitters to the quasimode of a Fabry-Perot microcavity," Phys. Rev. A 53, 1036-1047 (1996). [CrossRef] [PubMed]
  10. D.L. Huffaker, D.G. Deppe, K. Kumar, and T.J. Rogers, "Native-oxide defined ring contact for low threshold vertical-cavity lasers," Appl. Phys. Lett. 64, 97-99 (1994). [CrossRef]
  11. J.M. Dallesasse, N. Holonyak, Jr., A.R. Sugg, T.A. Richard, and N. El-Zein, "Hydrolization oxidation of AlGaAs-AlAs-GaAs quantum well heterostructures," Appl. Phys. Lett. 57, 2844-2846 (1990). [CrossRef]
  12. D.L. Huffaker and D.G. Deppe, "Spontaneous coupling to planar and index-confined quasimodes of Fabry-Perot microcavities," Appl. Phys. Lett. 67, 2494-2596 (1995). [CrossRef]
  13. D.G. Deppe and Q. Deng, "Eigenmode analysis of the dielectrically-apertured Fabry-Perot microcavity and its relation to self-focusing in the vertical-cavity surface-emitting laser," Appl. Phys. Lett. 71, 160-162 (1997). [CrossRef]
  14. Q. Deng and D.G. Deppe, "Self-consistent calculation of the lasing eigenmode of the dielectrically-apertured Fabry-Perot microcavity with idealized or distributed Bragg reflectors," IEEE J. Quantum Electron. 33, 2319-2326 (1997). [CrossRef]
  15. D.G. Deppe, T.-H. Oh, and D.L. Huffaker, "Eigenmode confinement in the dielectrically apertured Fabry-Perot microcavity," IEEE Photonics Technol. Lett. 9, 713-715 (1997). [CrossRef]
  16. R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961) pg. 188.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited