OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 1–6

Effects of spin process on birefringence strength of single-mode fibers

Luca Palmieri, Tommy Geisler, and Andrea Galtarossa  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 1-6 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spin process is the most effective and diffused way to reduce polarization mode dispersion in single-mode optical fibers. All theoretical models adopted so far to describe spun fibers assume that the only effect of spin is to rotate fiber birefringence, without affecting its strength. Yet, experimental analyses of this hypothesis are controversial. In this paper, we report on an extensive experimental characterization of birefringence in spun and unspun fibers. Results indicate that the spinning process has no instantaneous effect on birefringence strength, regardless of the kind of fiber; nevertheless, there might be a small average effect on G.652 fibers.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements

ToC Category:
Fibers, Fiber Devices, and Amplifiers

Original Manuscript: October 3, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 7, 2011
Published: December 19, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Luca Palmieri, Tommy Geisler, and Andrea Galtarossa, "Effects of spin process on birefringence strength of single-mode fibers," Opt. Express 20, 1-6 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, New York, 2005). [CrossRef]
  2. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16, 804–817 (2008). [CrossRef] [PubMed]
  3. L. Nelson, S. Woodward, S. Foo, X. Zhou, M. Feuer, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O. Sullivan, and P. Magill, “Performance of a 46-Gb/s dual-polarization QPSK transceiver with real-time coherent equalization over high PMD fiber,” J. Lightwave Technol. 27, 158–167 (2009). [CrossRef]
  4. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Mardoyan, M. Salsi, and S. Bigo, “Experimental assessment of interactions between nonlinear impairments and polarization-mode dispersion in 100-Gb/s coherent systems versus receiver complexity,” IEEE Photon. Technol. Lett. 21, 51–53 (2009). [CrossRef]
  5. P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmissions,” J. Lightwave Technol. 29, 1691–1700 (2011). [CrossRef]
  6. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20, 2962–2968 (1981). [CrossRef] [PubMed]
  7. M. J. Li and D. A. Nolan, “Fiber spin-profile designs for producing fibers with low polarization mode dispersion,” Opt. Lett. 23, 1659–1661 (1998). [CrossRef]
  8. A. Galtarossa, L. Palmieri, and A. Pizzinat, “Optimized spinning design for low PMD fibers: an analytical approach,” J. Lightwave Technol. 19, 1502–1512 (2001). [CrossRef]
  9. A. Galtarossa, L. Palmieri, and D. Sarchi, “Measure of spin period in randomly birefringent low-PMD fibers,” IEEE Photon. Technol. Lett. 16, 1131–1133 (2004). [CrossRef]
  10. G. Bouquet, L. A. de Montmorillon, and P. Nouchi, “Analytical solution of polarization mode dispersion for triangular spun fibers,” Opt. Lett. 29, 2118–2120 (2004). [CrossRef] [PubMed]
  11. M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004). [CrossRef]
  12. S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006). [CrossRef]
  13. L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006). [CrossRef]
  14. A. Galtarossa, D. Grosso, L. Palmieri, and M. Rizzo, “Spin-profile characterization in randomly birefringent spun fibers by means of frequency-domain reflectometry,” Opt. Lett. 34, 1078–1080 (2009). [CrossRef] [PubMed]
  15. L. Palmieri, T. Geisler, and A. Galtarossa, “Experimental evidences of independence between birefringence modulus and spin rate in periodically spun fibers,” in 37th European Conference on Optical Communication (ECOC) (2011), paper Th.12.LeCervin.3.
  16. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Reflectometric measurement of birefringence rotation in single-mode optical fibers,” Opt. Lett. 33, 2284–2286 (2008). [CrossRef] [PubMed]
  17. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964). [CrossRef]
  18. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.  38, 49–95 (1996). [CrossRef]
  19. L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011). [CrossRef] [PubMed]
  20. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979). [CrossRef] [PubMed]
  21. D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6, 227–232 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited