OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 141–148

Multicore composite single-mode polymer fibre

Sergio G. Leon-Saval, Richard Lwin, and Alexander Argyros  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 141-148 (2012)
http://dx.doi.org/10.1364/OE.20.000141


View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study, fabricate and characterise an all-solid polymer composite waveguide consisting of a multicore fibre for single-mode operation down to the visible. The individual cores of the multicore structure that forms the composite core are arranged such that they strongly interact. The behaviour and parameters of the multicore geometry are analysed to achieve true single-mode operation. The composite core fibre is fabricated with off-the-shelf poly-methyl-methacrylate (PMMA) and Zeonex 480R polymers.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 3, 2011
Revised Manuscript: December 11, 2011
Manuscript Accepted: December 13, 2011
Published: December 19, 2011

Citation
Sergio G. Leon-Saval, Richard Lwin, and Alexander Argyros, "Multicore composite single-mode polymer fibre," Opt. Express 20, 141-148 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. J. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in the strain testing using microstructured polymer optical fibres (mPOF),” Meas. Sci. Tech. 20 (2009).
  2. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999). [CrossRef]
  3. M. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 8(10), 3144–3154 (2007). [CrossRef]
  4. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fibre polymer optical fibre sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008). [CrossRef]
  5. M. C. J. Large, D. Blacket, and C.-A. Bunge, “Microstructured polymer optical fibres compared to conventional POF: novel properties and applications,” IEEE Sens. J. 10(7), 1213–1217 (2010). [CrossRef]
  6. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook (Springer, Berlin 2008).
  7. L. L. Blyer, T. Salmon, W. White, M. Dueser, W. A. Reed, Ch. S. Coappen, Ch. Ronaghan, P. Wiltzius, and X. Quan, “Performance and reliability of graded-index polymer optical fibres,” in Proceedings of the 47th (International Wire and Cable Symposium, Inc., 1998), pp. 241–245.
  8. D. Bosc and C. Toinen, “Fully polymer single-mode optical fibre,” IEEE Photon. Technol. Lett. 4(7), 749–750 (1992). [CrossRef]
  9. D. W. Garvey, K. Zimmerman, P. Young, J. Tostenrude, J. S. Townsend, Z. Zhou, M. Lobel, M. Dayton, R. Wittorf, M. G. Kuzyk, J. Sounick, and C. W. Dirk, “Single-mode nonlinear-optical polymer fibres,” J. Opt. Soc. Am. B 13(9), 2017 (1996). [CrossRef]
  10. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  11. A. Argyros, “Microstructured polymer optical fibres,” J. Lightwave Technol. 27(11), 1571–1579 (2009). [CrossRef]
  12. G. Zhou, C. F. J. Pun, H. Tam, A. C. L. Wong, C. Lu, and P. K. A. Wai, “Single-mode perfluorinated polymer optical fibres with refractive index of 1.34 for biomedical applications,” IEEE Photon. Technol. Lett. 22(2), 106–108 (2010). [CrossRef]
  13. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Opt. Lett. 34(18), 2876–2878 (2009). [CrossRef] [PubMed]
  14. J. M. Fini, “Large-mode-area multicore fibers in the single-moded regime,” Opt. Express 19(5), 4042–4046 (2011). [CrossRef] [PubMed]
  15. Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier,” Opt. Express 12(25), 6230–6239 (2004). [CrossRef] [PubMed]
  16. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, “Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area,” Opt. Lett. 30(13), 1668–1670 (2005). [CrossRef] [PubMed]
  17. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28(14), 1200–1202 (2003). [CrossRef] [PubMed]
  18. R. J. Black, J. Lapierre, and J. Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J. 134(2), 105 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited