OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 149–157

Vectorial self-diffraction effect in optically Kerr medium

Bing Gu, Fan Ye, Kai Lou, Yongnan Li, Jing Chen, and Hui-Tian Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 149-157 (2012)
http://dx.doi.org/10.1364/OE.20.000149


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the far-field vectorial self-diffraction behavior of a cylindrical vector field passing though an optically thin Kerr medium. Theoretically, we obtain the analytical expression of the focal field of the cylindrical vector field with arbitrary integer topological charge based on the Fourier transform under the weak-focusing condition. Considering the additional nonlinear phase shift photoinduced by a self-focusing medium, we simulate the far-field vectorial self-diffraction patterns of the cylindrical vector field using the Huygens-Fresnel diffraction integral method. Experimentally, we observe the vectorial self-diffraction rings of the femtosecond-pulsed radially polarized field and high-order cylindrical vector field in carbon disulfide, which is in good agreement with the theoretical simulations. Our results benefit the understanding of the related spatial self-phase modulation effects of the vector light fields, such as spatial solitons, self-trapping, and self-guided propagation.

© 2011 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 6, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: December 3, 2011
Published: December 19, 2011

Citation
Bing Gu, Fan Ye, Kai Lou, Yongnan Li, Jing Chen, and Hui-Tian Wang, "Vectorial self-diffraction effect in optically Kerr medium," Opt. Express 20, 149-157 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Callen, B. G. Huth, and R. H. Pantell, “Optical patterns of thermally self-defocused light,” Appl. Phys. Lett.11, 103–105 (1967). [CrossRef]
  2. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser induced diffraction rings from a nematic liquid crystal film,” Opt. Lett.6, 411–413 (1981). [PubMed]
  3. P. F. Wu, B. Zou, X. Wu, J. Xu, X. Gong, G. Zhang, G. Tang, and W. Chen, “Biphotonic self-diffraction in azo-doped polymer film,” Appl. Phys. Lett.70, 1224–1226 (1997). [CrossRef]
  4. R. G. Harrison, L. Dambly, D. J. Yu, and W. P. Lu, “A new self-diffraction pattern formation in defocusing liquid media,” Opt. Commun.139, 69–72 (1997). [CrossRef]
  5. W. Ji, W. Z. Chen, S. H. Lim, J. Y. Lin, and Z. X. Guo, “Gravitation-dependent, thermally-induced self-diffraction in carbon nanotube solutions,” Opt. Express14, 8958–8966 (2006). [CrossRef] [PubMed]
  6. M. Trejo-Durán, J. A. Andrade-Lucio, A. Martinez-Richa, R. Vera-Graziano, and V. M. Castaño, “Self-diffracting effects in hybrid materials,” Appl. Phys. Lett.90, 091112 (2007). [CrossRef]
  7. A. B. Villafranca and K. Saravanamuttu, “Spontaneous and sequential transitions of a Gaussian beam into diffraction rings, single ring and circular array of filaments in a photopolymer,” Opt. Express19, 15560–15573 (2011). [CrossRef] [PubMed]
  8. E. Santamato and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett.9, 564–566 (1984). [CrossRef] [PubMed]
  9. D. J. Yu, W. P. Lu, and R. G. Harrison, “Analysis of dark spot formation in absorbing liquid media,” J. Mod. Opt.45, 2597–2606 (1998). [CrossRef]
  10. L. G. Deng, K. N. He, T. Z. Zhou, and C. D. Li, “Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media,” J. Opt. A: Pure Appl. Opt.7, 409–415 (2005). [CrossRef]
  11. C. M. Nascimento, M. A. R. C. Alencar, S. Chávez-Cerda, M. G. A. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium,” J. Opt. A: Pure Appl. Opt.8, 947–951 (2006). [CrossRef]
  12. E. V. G. Ramirez, M. L. A. Carrasco, M. M. M. Otero, S. C. Cerda, and M. D. I. Castillo, “Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media,” Opt. Express18, 22067–22079 (2010). [CrossRef] [PubMed]
  13. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1, 1–57 (2009). [CrossRef]
  14. A. Ohtsu, Y. Kozawa, and S. Sato, “Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams,” Appl. Phys. B98, 851–855 (2010). [CrossRef]
  15. S. Y. Yang and Q. W. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A: Pure Appl. Opt.10, 152103(2008). [CrossRef]
  16. A. A. Ishaaya, L. T. Vuong, T. D. Grow, and A. L. Gaeta, “Self-focusing dynamics of polarization vortices in Kerr media,” Opt. Lett.33, 13–15 (2008). [CrossRef]
  17. X. L. Wang, Y. N. Li, J. Chen, C. S. Guo, J. P. Ding, and H. T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express18, 10786–10795 (2010). [CrossRef] [PubMed]
  18. W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett.63, 1613–1615 (1993). [CrossRef]
  19. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express18, 10828–10833 (2010). [CrossRef] [PubMed]
  20. T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed.50, 5274–5293 (2011). [CrossRef]
  21. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32, 3549–3551 (2007). [CrossRef] [PubMed]
  22. X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express19, 5559–5564 (2011). [CrossRef] [PubMed]
  23. B. Gu, Y. Wang, J. Wang, and W. Ji, “Femtosecond third-order optical nonlinearity of polycrystalline BiFeO3,” Opt. Express17, 10970–10975 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited