OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 173–185

Closed-form Maker fringe formulas for poled polymer thin films in multilayer structures

Dong Hun Park and Warren N. Herman  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 173-185 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report new closed-form expressions for Maker fringes of anisotropic and absorbing poled polymer thin films in multilayer structures that include back reflections of both fundamental and second-harmonic waves. The expressions, based on boundary conditions at each interface, can be applied to multilayer structures containing a buffer and a transparent conducting oxide layer, which might enhance multiple reflections of fundamental and second-harmonic waves inside a nonlinear thin film layer. This formulation facilitates Maker fringe analysis for a sample containing additional multilayer structures on either side of a poled polymer thin film. Experimental data and numerical simulations are given to indicate the importance of inclusion of such a reflective layer in analyses for reliable characterization of second-harmonic tensor elements.

© 2011 OSA

OCIS Codes
(160.5470) Materials : Polymers
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: November 7, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 12, 2011
Published: December 19, 2011

Dong Hun Park and Warren N. Herman, "Closed-form Maker fringe formulas for poled polymer thin films in multilayer structures," Opt. Express 20, 173-185 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics, Vol 601 of ACS Symposium Series (ACS, 1995).
  2. W. N. Herman, S. R. Flom, and S. H. Foulger, eds., Organic Thin Films for Photonic Applications, Vol. 1039 of ACS Symposium Series (ACS, 2010).
  3. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94(1), 31–75 (1994). [CrossRef]
  4. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990). [CrossRef]
  5. J. S. Schildkraut, “Determination of the electro optic coefficient of a poled polymer film,” Appl. Opt. 29(19), 2839–2841 (1990). [CrossRef] [PubMed]
  6. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14(19), 8866–8884 (2006). [CrossRef] [PubMed]
  7. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of Dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962). [CrossRef]
  8. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970). [CrossRef]
  9. N. Okamoto, Y. Hirano, and O. Sugihara, “Precise estimation of nonlinear-optical coefficients for anisotropic nonlinear films with C∞v symmetry,” J. Opt. Soc. Am. B 9(11), 2083–2087 (1970). [CrossRef]
  10. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995). [CrossRef]
  11. T. K. Lim, M.-Y. Jeong, C. Song, and D. C. Kim, “Absorption effect in the calculation of a second-order nonlinear coefficient from the data of a maker fringe experiment,” Appl. Opt. 37(13), 2723–2728 (1998). [CrossRef] [PubMed]
  12. H. Hellwig and L. Bohaty, “Multiple reflections and Fabry-Perot interference corrections in Maker fringe experiments,” Opt. Commun. 161(1-3), 51–56 (1999). [CrossRef]
  13. N. A. Sanford and J. A. Aust, “Nonlinear optical characterization of LiNbO3. I. Theoretical analysis of Maker fringe patterns for x-cut wafers,” J. Opt. Soc. Am. B 15(12), 2885–2908 (1998). [CrossRef]
  14. M. Abe, I. Shoji, J. Suda, and T. Kondo, “Comprehensive analysis of multiple-reflection effects on rotational Maker-fringe experiments,” J. Opt. Soc. Am. B 25(10), 1616–1624 (2008). [CrossRef]
  15. M. Braun, F. Bauer, Th. Vogtmann, and M. Schwoerer, “Precise second-harmonic generation Maker fringe measurements in single crystals of the diacetylene NP/4-MPU and evaluation by a second-harmonic generation theory in 4×4 matrix formulation and ray tracing,” J. Opt. Soc. Am. B 14(7), 1699–1706 (1997). [CrossRef]
  16. M. Braun, F. Bauer, Th. Vogtmann, and M. Schwoerer, “Detailed analysis of second-harmonic-generation Maker fringes in biaxially birefringent materials by a 4×4 matrix formulation,” J. Opt. Soc. Am. B 15(12), 2877–2884 (1998). [CrossRef]
  17. V. Rodriguez and C. Sourisseau, “General Maker-fringe ellipsometric analyses in multilayer nonlinear and linear anisotropic optical media,” J. Opt. Soc. Am. B 19(11), 2650–2664 (2002). [CrossRef]
  18. S. Lee, B. Park, S.-D. Lee, G. Park, and Y. D. Kim, “Second-harmonic generation in poled films of nonlinear optical polymer composites,” Opt. Quantum Electron. 27(5), 411–420 (1995). [CrossRef]
  19. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic, 1974).
  20. J. P. Drummond, S. J. Clarson, J. S. Zetts, F. K. Hopkins, and S. J. Caracci, “Enhanced electro-optic poling in guest–host systems using conductive polymer-based cladding layers,” Appl. Phys. Lett. 74(3), 368–370 (1999). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 1988)
  23. D. Guo, R. Lin, and W. Wang, “Gaussian-optics-based optical modeling and characterization of a Fabry-Perot microcavity for sensing applications,” J. Opt. Soc. Am. A 22(8), 1577–1588 (2005). [CrossRef] [PubMed]
  24. K. D. Singer, M. D. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 17, 566–571 (2000).
  25. R. C. Hoffman, A. G. Mott, M. J. Ferry, T. M. Pritchett, W. Shensky, J. A. Orlicki, G. R. Martin, J. Dougherty, J. L. Leadore, A. M. Rawlett, and D. H. Park, “Poling of visible chromophores in millimeter-thick PMMA host,” Opt. Mater. Express 1(1), 67–77 (2011). [CrossRef]
  26. J. Zhang, G. Wang, Z. Liu, L. Wang, G. Zhang, X. Zhang, Y. Wu, P. Fu, and Y. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express 18(1), 237–243 (2010). [CrossRef] [PubMed]
  27. C. Chen, Z. Shao, J. Jiang, J. Wei, J. Lin, J. Wang, N. Ye, J. Lv, B. Wu, M. Jiang, M. Yoshimura, Y. Mori, and T. Sasaki, “Determination of the nonlinear optical coefficients of YCa4O(BO3)3 crystal,” J. Opt. Soc. Am. B 17(4), 566–571 (2000). [CrossRef]
  28. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1965), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited