OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 256–264

The role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy

V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 256-264 (2012)
http://dx.doi.org/10.1364/OE.20.000256


View Full Text Article

Enhanced HTML    Acrobat PDF (2746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While it has been demonstrated that, above its resolution limit, Second Harmonic Generation (SHG) microscopy can map chiral local field enhancements, below that limit, structural defects were found to play a major role. Here we show that, even below the resolution limit, the contributions from chiral local field enhancements to the SHG signal can dominate over those by structural defects. We report highly homogeneous SHG micrographs of star-shaped gold nanostructures, where the SHG circular dichroism effect is clearly visible from virtually every single nanostructure. Most likely, size and geometry determine the dominant contributions to the SHG signal in nanostructured systems.

© 2011 OSA

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 31, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 5, 2011
Published: December 20, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, "The role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy," Opt. Express 20, 256-264 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  2. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  3. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009). [CrossRef]
  4. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Technique (CRC Press, 2009).
  5. V. K. Valev, A. Kirilyuk, F. Dalla Longa, J. Kohlhepp, B. Koopmans, and Th. Rasing, “Observation of periodic oscillations in magnetization-induced second harmonic generation at the Mn∕Co interface,” Phys. Rev. B75(1), 012401 (2007). [CrossRef]
  6. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett.51(21), 1983–1986 (1983). [CrossRef]
  7. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem.97(7), 1383–1388 (1993). [CrossRef]
  8. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality17(8), 421–437 (2005). [CrossRef] [PubMed]
  9. S. Foerier, I. A. Kolmychek, O. A. Aktsipetrov, T. Verbiest, and V. K. Valev, “Optical second harmonic generation chiral spectroscopy,” ChemPhysChem10(9-10), 1431–1434 (2009). [CrossRef] [PubMed]
  10. C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett.18(5), 167–170 (1967). [CrossRef]
  11. A. Kirilyuk and Th. Rasing, “Magnetization-induced-second-harmonic generation from surfaces and interfaces,” J. Opt. Soc. Am. B22(1), 148–167 (2005). [CrossRef]
  12. O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B22(1), 138–147 (2005). [CrossRef]
  13. V. K. Valev, M. Gruyters, A. Kirilyuk, and Th. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi242(15), 3027–3031 (2005) (b). [CrossRef]
  14. Y. Sheng, A. Best, H.-J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation,” Opt. Express18(16), 16539–16545 (2010). [CrossRef] [PubMed]
  15. V. V. Pavlov, J. Ferré, P. Meyer, G. Tessier, P. Georges, A. Brun, P. Beauvillain, and V. Mathet, “Linear and non-linear magneto-optical studies of Pt/Co/Pt thin films,” J. Phys. Condens. Matter13(44), 9867–9878 (2001). [CrossRef]
  16. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett.92(9), 093119 (2008). [CrossRef]
  17. V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The Origin of Second Harmonic Generation Hotspots in Chiral Optical Metamaterials,” Opt. Mater. Express1(1), 36–45 (2011). [CrossRef]
  18. V. K. Valev, A. V. Silhanek, Y. Jeyaram, D. Denkova, B. De Clercq, V. Petkov, X. Zheng, V. Volskiy, W. Gillijns, G. A. E. Vandenbosch, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Hotspot decorations map plasmonic patterns with the resolution of scanning probe techniques,” Phys. Rev. Lett.106(22), 226803 (2011). [CrossRef] [PubMed]
  19. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, “Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy,” Opt. Lett.28(9), 713–715 (2003). [CrossRef] [PubMed]
  20. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett.35(23), 4063–4065 (2010). [CrossRef] [PubMed]
  21. A. V. Zayats, I. I. Smolyaninov, and C. C. Davis, “Observation of localized plasmonic excitations in thin metal films with near-field second-harmonic microscopy,” Opt. Commun.169(1-6), 93–96 (1999). [CrossRef]
  22. O. A. Aktsipetrov, I. M. Baranova, E. D. Mishina, and A. V. Petukhov, “Lightning rod effect in surface-enhanced second-harmonic generation,” JETP Lett.40, 1012–1015 (1984).
  23. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104(20), 207402 (2010). [CrossRef] [PubMed]
  24. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  25. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second Harmonic Generation from a Nanopatterned Isotropic Nonlinear Material,” Nano Lett.6(5), 1027–1030 (2006). [CrossRef]
  26. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010). [CrossRef] [PubMed]
  27. J. Butet, G. Bachelier, J. Duboisset, F. Bertorelle, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation,” Opt. Express18(21), 22314–22323 (2010). [CrossRef] [PubMed]
  28. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.98(16), 167403 (2007). [CrossRef] [PubMed]
  29. V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O. A. Aktsipetrov, G. A. Vandenbosch, V. V. Moshchalkov, and T. Verbiest, “Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures,” Phys. Rev. Lett.104(12), 127401 (2010). [CrossRef] [PubMed]
  30. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett.105(7), 077401 (2010). [CrossRef] [PubMed]
  31. Y. Zeng and J. V. Moloney, “Volume electric dipole origin of second-harmonic generation from metallic membrane with noncentrosymmetric patterns,” Opt. Lett.34(18), 2844–2846 (2009). [CrossRef] [PubMed]
  32. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett.9(11), 3945–3948 (2009). [CrossRef] [PubMed]
  33. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B27(3), 408–416 (2010). [CrossRef]
  34. M. Centini, A. Benedetti, C. Sibilia, and M. Bertolotti, “Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation,” Opt. Express19(9), 8218–8232 (2011). [CrossRef] [PubMed]
  35. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays,” Opt. Express17(5), 3603–3609 (2009). [CrossRef] [PubMed]
  36. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano5(1), 91–96 (2011). [CrossRef] [PubMed]
  37. C. G. Biris and N. C. Panoiu, “Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires,” Phys. Rev. B81(19), 195102 (2010). [CrossRef]
  38. L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. Osgood., “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B79(23), 235416 (2009). [CrossRef]
  39. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83(20), 4045–4048 (1999). [CrossRef]
  40. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79(23), 235109 (2009). [CrossRef]
  41. W. L. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B78(19), 195416 (2008). [CrossRef]
  42. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009). [CrossRef]
  43. M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers,” Opt. Mater. Express1(1), 46–56 (2011). [CrossRef]
  44. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express14(2), 950–955 (2006). [CrossRef] [PubMed]
  45. I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B56(15), 9290–9293 (1997). [CrossRef]
  46. A. V. Zayats, T. Kalkbrenner, V. Sandoghdar, and J. Mlynek, “Second-harmonic generation from individual surface defects under local excitation,” Phys. Rev. B61(7), 4545–4548 (2000). [CrossRef]
  47. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express16(22), 17196–17208 (2008). [CrossRef] [PubMed]
  48. M. Zdanowicz, S. Kujala, H. Husu, and M. Kauranen, “Effective medium multipolar tensor analysis of second-harmonic generation from metal nanoparticles,” New J. Phys.13(2), 023025 (2011). [CrossRef]
  49. G. A. E. Vandenbosch, V. Volski, N. Verellen, and V. V. Moshchalkov, “On the use of the method of moments in plasmonic applications,” Radio Sci.46, RS0E02 (2011). [CrossRef]
  50. V. K. Valev, A. V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O. A. Aktsipetrov, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “U-shaped switches for optical information processing at the nanoscale,” Small7(18), 2573–2576 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited