OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 364–376

Complete polarization control of light from a liquid crystal spatial light modulator

Ignacio Moreno, Jeffrey A. Davis, Travis M Hernandez, Don M. Cottrell, and David Sand  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 364-376 (2012)
http://dx.doi.org/10.1364/OE.20.000364


View Full Text Article

Acrobat PDF (2512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to generate complete arbitrary spatially variant polarization modulation of a light beam by means of a parallel aligned nematic liquid crystal spatial light modulator (SLM). We first analyze the polarization modulation properties in a transmission mode. We encode diffraction gratings onto the SLM and show how to achieve partial polarization control of the zero order transmitted light. We then extend the technique to a double modulation scheme, which is implemented using a single SLM divided in two areas in a reflective configuration. The polarization states of the transmitted beam from the first pass through the first area are rotated using two passes through a quarter wave plate. The beam then passes through the second area of the SLM where additional polarization information can be encoded. By combining previously reported techniques, we can achieve complete amplitude, phase and polarization control for the diffracted light that allows the creation of arbitrary diffractive optical elements including polarization control. Theoretical analysis based on the Jones matrix formalism, as well as excellent experimental results are presented.

© 2011 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.5440) Optical devices : Polarization-selective devices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

History
Original Manuscript: November 7, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: December 2, 2011
Published: December 21, 2011

Citation
Ignacio Moreno, Jeffrey A. Davis, Travis M Hernandez, Don M. Cottrell, and David Sand, "Complete polarization control of light from a liquid crystal spatial light modulator," Opt. Express 20, 364-376 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-364


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. E. Solomon, “Polarization imaging,” Appl. Opt.20(9), 1537–1544 (1981). [CrossRef] [PubMed]
  2. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt.44(19), 4049–4052 (2005). [CrossRef] [PubMed]
  3. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001). [CrossRef]
  4. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt.39(10), 1549–1554 (2000). [CrossRef] [PubMed]
  5. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  6. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16(20), 15897–15902 (2008). [CrossRef] [PubMed]
  7. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9(3), 78 (2007). [CrossRef]
  8. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt.38(23), 5004–5013 (1999). [CrossRef] [PubMed]
  9. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng.38(6), 1051–1057 (1999). [CrossRef]
  10. M. Taghi Tavassoly, I. Moaddel Haghighi, and K. Hassani, “Application of Fresnel diffraction from a phase step to the measurement of film thickness,” Appl. Opt.48(29), 5497–5501 (2009). [CrossRef] [PubMed]
  11. J. A. Ferrari and J. L. Flores, “Nondirectional edge enhancement by contrast-reverted low-pass Fourier filtering,” Appl. Opt.49(17), 3291–3296 (2010). [CrossRef] [PubMed]
  12. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt.23(6), 812–816 (1984). [CrossRef] [PubMed]
  13. J. L. Horner and J. R. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt.24(5), 609–611 (1985). [CrossRef] [PubMed]
  14. J. A. Davis, S. W. Flowers, D. M. Cottrell, and R. A. Lilly, “Smoothing of the edge-enhanced impulse response from binary phase-only filters using random binary patterns,” Appl. Opt.28(15), 2987–2988 (1989). [CrossRef] [PubMed]
  15. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt.34(26), 5961–5969 (1995). [CrossRef] [PubMed]
  16. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X.-C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett.35(10), 1536–1538 (2010). [CrossRef] [PubMed]
  17. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt.37(5), 937–945 (1998). [CrossRef] [PubMed]
  18. J. Nicolás and J. A. Davis, “Programmable wave plates using a twisted nematic liquid crystal display,” Opt. Eng.41(12), 3004–3005 (2002). [CrossRef]
  19. J. Luis Martínez, I. Moreno, J. A. Davis, T. J. Hernandez, and K. P. McAuley, “Extended phase modulation depth in twisted nematic liquid crystal displays,” Appl. Opt.49(30), 5929–5937 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited