OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 397–402

Highly flexible near-infrared metamaterials

G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, and K. W. Cheah  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 397-402 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic or metamaterial nanostructures are usually fabricated on rigid substrate i.e. glass, silicon. Optical functionality of such kinds of nanostructures is limited by the planar surface and thus sensitive to the incident angle of light. In this work, we demonstrated that a tri-layer flexible metamaterials working at near infrared (NIR) regime can be fabricated on transparent PET substrate using flip chip transfer (FCT) technique. FCT technique is solution-free and can also be applied to fabricate other functional nanostructures device on flexible substrate. We demonstrated NIR metamaterial device can be transformed into various shapes by bending the PET substrate.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: November 1, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 5, 2011
Published: December 21, 2011

G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, and K. W. Cheah, "Highly flexible near-infrared metamaterials," Opt. Express 20, 397-402 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, “Optical negative index metamaterial,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]
  3. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials—more bulky and less lossy,” Science 330(6011), 1633–1634 (2010). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  6. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009). [CrossRef] [PubMed]
  7. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010). [CrossRef] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  9. F. Miyamaru, M. W. Taketa, and K. Taima, “Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region,” Appl. Phys. Express 2, 042001 (2009). [CrossRef]
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008). [CrossRef]
  11. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. Ohara, “Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies,” Appl. Phys. Lett. 94(16), 161113 (2009). [CrossRef]
  12. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95(18), 181105 (2009). [CrossRef]
  13. H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater. (Deerfield Beach Fla.) 22(32), 3527–3531 (2010). [CrossRef] [PubMed]
  14. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. (Deerfield Beach Fla.) 23(28), 3197–3201 (2011). [CrossRef] [PubMed]
  15. Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Express 1(2), 151–157 (2011). [CrossRef]
  16. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010). [CrossRef] [PubMed]
  17. K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, and P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1084–1101 (2010). [CrossRef] [PubMed]
  18. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused ion beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2547–2549 (2005). [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995). [CrossRef]
  20. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  21. J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2481–2485 (2005). [CrossRef]
  22. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007). [CrossRef] [PubMed]
  23. H. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 523–529 (2010).
  24. A. D. Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys. 12(11), 113006 (2010). [CrossRef]
  25. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011). [CrossRef] [PubMed]
  26. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  27. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  28. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Phys. Status Solidi (B) 246(7), 1397–1406 (2009). [CrossRef]
  29. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36(1), 37–39 (2011). [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited