OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 426–439

General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations

Ilai Schwarz, Nitzan Livneh, and Ronen Rapaport  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 426-439 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an intuitive reasoning and derivation leading to an approximated, simple closed-form model for predicting and explaining the general emergence of enhanced transmission resonances through rectangular, optically thick metallic gratings in various configurations and polarizations. This model is based on an effective index approximation and it unifies in a simple way the underlying mechanism of enhanced transmission as emerging from standing wave resonances of the different diffraction orders of periodic structures. The model correctly predicts the conditions for the enhanced transmission resonances in various geometrical configurations, for both TE and TM polarizations, and in both the subwavelength and non-subwavelength spectral regimes, using the same underlying mechanism and one simple closed-form equation, and does not require explicitly invoking specific polarization dependent mechanisms. The known excitation of surface plasmons polaritons or slit cavity modes, emerge as limiting cases of a more general condition. This equation can be used to easily design and analyze the optical properties of a wide range of rectangular metallic transmission gratings.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2065) Diffraction and gratings : Effective medium theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: September 6, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 11, 2011
Published: December 21, 2011

Ilai Schwarz, Nitzan Livneh, and Ronen Rapaport, "General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations," Opt. Express 20, 426-439 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820 –822 (2002). [CrossRef] [PubMed]
  3. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotechnol. 9, 11–29 (2010). [CrossRef]
  4. A. Y. Nikitin, F. J. Garca-Vidal, and L. Martn-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A: Pure Appl. Opt. 11, 125702 (2009). [CrossRef]
  5. N. Livneh, A. Strauss, I. Schwarz, I. Rosenberg, A. Zimran, S. Yochelis, G. Chen, U. Banin, Y. Paltiel, and R. Rapaport, “Highly directional emission and photon beaming from nanocrystal quantum dots embedded in metallic nanoslit arrays,” Nano Lett. 11, 1630–1635 (2011). [CrossRef] [PubMed]
  6. F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66 (2002). [CrossRef]
  7. M. G. Harats, I. Schwarz, A. Zimran, U. Banin, G. Chen, and R. Rapaport, “Enhancement of two photon processes in quantum dots embedded in subwavelength metallic gratings,” Opt. Express 19, 1617–1625 (2011). [CrossRef] [PubMed]
  8. X. Zhang, H. Liu, J. Tian, Y. Song, and L. Wang, “Band-Selective optical polarizer based on Gold-Nanowire plasmonic diffraction gratings,” Nano Lett. 8, 2653–2658 (2008). [CrossRef] [PubMed]
  9. F. Chien, C. Lin, J. Yih, K. Lee, C. Chang, P. Wei, C. Sun, and S. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron. 22, 2737–2742 (2007). [CrossRef]
  10. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  11. M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66 (2002). [CrossRef]
  12. P. Lalanne, J. Hugonin, S. Astilean, M. Palamaru, and K. Moller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  13. J. Shen and P. Platzman, “Properties of a one-dimensional metallophotonic crystal,” Phys. Rev. B 70 (2004). [CrossRef]
  14. K. G. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005). [CrossRef] [PubMed]
  15. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  16. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 –848 (2004). [CrossRef] [PubMed]
  17. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010). [CrossRef]
  18. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67, 195402 (2003).
  19. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67, 035424 (2003). [CrossRef]
  20. A. V. Kats and A. Y. Nikitin, “Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation,” Phys. Rev. B 70, 235412 (2004). [CrossRef]
  21. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006). [CrossRef]
  22. D. Rosenblatt, A. Sharon, and A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  23. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248 (2003). [CrossRef]
  24. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004). [CrossRef] [PubMed]
  25. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [CrossRef] [PubMed]
  26. H. Lochbihler, “Enhanced transmission of TE polarized light through wire gratings,” Phys. Rev. B 79 (2009). [CrossRef]
  27. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  28. A. Benabbas, V. Halte, and J. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13, 8730–8745 (2005). [CrossRef] [PubMed]
  29. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  30. M. Guillaumee, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited