OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 462–473

Theory of plasmonic femtosecond pulse generation by mode-locking of long-range surface plasmon polariton lasers

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 462-473 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a semiclassical theory of passively mode-locked surface plasmon polariton (SPP) lasers based on a SPP Bragg resonator with a metal film deposited on a polymer host and adjacent layers of a slow saturable absorber and a slow saturable gain medium. The mode-locked laser dynamics is studied for the case that both the gain medium and the saturable absorber are solid-state dyes. The SPP laser pulse parameters are calculated in dependence on layer thicknesses of the metal film and pump parameters. We predict the possibility of SPP pulse generation with ∼ 100 fs pulse duration.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 30, 2011
Revised Manuscript: October 31, 2011
Manuscript Accepted: October 31, 2011
Published: December 21, 2011

Kwang-Hyon Kim, Anton Husakou, and Joachim Herrmann, "Theory of plasmonic femtosecond pulse generation by mode-locking of long-range surface plasmon polariton lasers," Opt. Express 20, 462-473 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  2. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef] [PubMed]
  3. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008). [CrossRef] [PubMed]
  4. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4, 382–387 (2010). [CrossRef]
  5. M. C. Gather, K. Meerholz, N. Danz, and K. Lesson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nature Photon. 4, 457–461 (2010). [CrossRef]
  6. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011). [CrossRef] [PubMed]
  7. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35, 1197–1199 (2010). [CrossRef] [PubMed]
  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef] [PubMed]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Noetzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef] [PubMed]
  10. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  11. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90027402 (2003). [CrossRef] [PubMed]
  12. M. I. Stockman, “Spasers explained,” Nature Photon. 2, 327–329 (2008). [CrossRef]
  13. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B 71, 115409 (2005). [CrossRef]
  14. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A 71, 063812 (2005). [CrossRef]
  15. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef] [PubMed]
  16. Z.-G. Dong, H. Liu, T. Li, Z.-H. Zhu, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials,” Opt. Express 16, 20974–20980 (2008). [CrossRef] [PubMed]
  17. M. Wegener, J. L. Garcia-Pomar, N. M. C. M. Soukoulis, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16, 19785–19798 (2008). [CrossRef] [PubMed]
  18. S.-W. Chang, C.-Y. A. Ni, and S.-L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16, 024301 (2008). [CrossRef]
  19. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104 (2009). [CrossRef]
  20. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010). [CrossRef]
  21. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 211102 (2006). [CrossRef]
  22. I. D. Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401 (2008). [CrossRef]
  23. I. D. Leon and P. Berini, “Modeling surface plasmon-polariton gain in planar metallic structures,” Opt. Express 17, 20191–20202 (2009). [CrossRef] [PubMed]
  24. D. Yu. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011). [CrossRef] [PubMed]
  25. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Light. Tech. 24(2), 912–918 (2006). [CrossRef]
  26. J. Herrmann and B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987).
  27. J.C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Academic Press, San Diego, 2006).
  28. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. QE-11, 736–746 (1975). [CrossRef]
  29. M. J. Adams, An Introduction to Optical Waveguides (John Wiley and Sons, Chichester-New York-Brisbane-Toronto, 1981).
  30. L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986). [CrossRef]
  31. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (John Wiley and Sons, New York, 2001). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  33. P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer Verlag, Berlin, 2007). [CrossRef]
  34. J. Herrmann and F. Weidner, “Theory of passively mode-locked cw dye lasers,” Appl. Phys. B 27, 105–113 (1982). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, Amsterdam, 2007).
  36. P. Berini, “Long-range surface plasmon polaritons,” Advances in Optics and Photonics 1, 484–588 (2009). [CrossRef]
  37. P. Sperber, W. Spangler, B. Meier, and A. Penzkofer, “Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers,” Opt. Quantum Electron. 20, 395–431 (1988). [CrossRef]
  38. D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, and R. F. Foutter, “Diode-pumped dye laser analysis and design,” Appl. Opt. 31(33), 7034–7041 (1992). [CrossRef] [PubMed]
  39. B. Kopainsky, P. Qiu, W. Kaiser, B. Sens, and K. H. Drexhage, “Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 mm,” Appl. Phys. B 29, 15–18 (1982). [CrossRef]
  40. A. A. Ishchenko, “Laser media based on polymethine dyes,” Quantum Electron. 24, 87–172 (1994). [CrossRef]
  41. B. H. Soffer and B. B. McFarland, “Continuously tuable, narrow band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967). [CrossRef]
  42. A. Costela, I. Garcia-Moreno, and C. Gomez, “Efficient and stable dye laser action from modified dipyrromethene BF2 complexes,” Appl. Phys. Lett. 79, 305–307 (2001). [CrossRef]
  43. P. Runge and R. Rosenberg, “Unconfined flowing-dye films for CW dye lasers,” IEEE J. Quantum Electron. 8, 910–911 (1972). [CrossRef]
  44. A. Costela, I. Garcia-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High repetition- rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001). [CrossRef]
  45. I. G. Kytina, V. G. Kitin, and K. Lips, “High power polymer dye laser with improved stability,” Appl. Phys. Lett. 84, 4092–4904 (2004). [CrossRef]
  46. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31, 1669–1671 (2006). [CrossRef] [PubMed]
  47. P. Yeh, Optical Waves in Layered Media (John Wiley, New York, 1988).
  48. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  49. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited