OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 48–62

Bragg waveguides with low-index liquid cores

Kristopher J. Rowland, Shahraam Afshar, V., Alexander Stolyarov, Yoel Fink, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 48-62 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral properties of light confined to low-index media by binary layered structures is discussed. A novel phase-based model with a simple analytical form is derived for the approximation of the center of arbitrary bandgaps of binary layered structures operating at arbitrary effective indices. An analytical approximation to the sensitivity of the bandgap center to changes in the core refractive index is thus derived. Experimentally, significant shifting of the fundamental bandgap of a hollow-core Bragg fiber with a large cladding layer refractive index contrast is demonstrated by filling the core with liquids of various refractive indices. Confirmation of these results against theory is shown, including the new analytical model, highlighting the importance of considering material dispersion. The work demonstrates the broad and sensitive tunability of Bragg structures and includes discussions on refractive index sensing.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides
(310.4165) Thin films : Multilayer design

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 14, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: November 28, 2011
Published: December 19, 2011

Kristopher J. Rowland, Shahraam Afshar, Alexander Stolyarov, Yoel Fink, and Tanya M. Monro, "Bragg waveguides with low-index liquid cores," Opt. Express 20, 48-62 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427–430 (1976). [CrossRef]
  2. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–437 (1977). [CrossRef]
  3. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  4. H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4, 3–16 (2008). [CrossRef] [PubMed]
  5. A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4, 17–32 (2008). [CrossRef]
  6. D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13, 10564–10570 (2005). [CrossRef] [PubMed]
  7. M. Skorobogatiy, “Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors,” J. Sensors 2009, 1–20 (2009). [CrossRef]
  8. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004). [CrossRef] [PubMed]
  9. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17, 24342–24348 (2009). [CrossRef]
  10. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef] [PubMed]
  11. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004). [CrossRef] [PubMed]
  12. H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17, 17130–17135 (2009). [CrossRef] [PubMed]
  13. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, and M. M. Brewster, “Surface-emitting fiber lasers,” Opt. Express 14, 3929–3935 (2006). [CrossRef] [PubMed]
  14. J. Scheuer and X. Sun, “Radial Bragg resonators,” in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds. (Springer Series in Optical Sciences, 2010), Chap. 15. [CrossRef]
  15. D. Zhou and L. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38, 1599–1606 (2002). [CrossRef]
  16. R. Bernini, S. Campopiano, and L. Zeni, “Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor,” Appl. Opt. 41, 70–73 (2002). [CrossRef] [PubMed]
  17. G. Testa, Y. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett. 35, 1584–1586 (2010). [CrossRef] [PubMed]
  18. K. J. Rowland, S. Afshar, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008). [CrossRef] [PubMed]
  19. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  20. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002). [CrossRef]
  21. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. 4, 1–9 (2009). [CrossRef]
  22. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol. 11, 416–423 (1993). [CrossRef]
  23. S. Kühn, P. Measor, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “Particle manipulation with integrated optofluidic traps,” Digest of the IEEE/LEOS Summer Topical Meetings, pp. 187–188 (2008). [CrossRef]
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  25. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons Inc., 2005).
  26. K. J. Rowland, S. Afshar, A. Stolyarov, Y. Fink, and T. M. Monro, “Spectral properties of liquid-core Bragg fibers”, Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, US, June 2–4 2009.
  27. H. Qu and M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Appl. Phys. Lett. 98, 201114 (2011). [CrossRef]
  28. D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express 12, 2710–2715 (2004). [CrossRef] [PubMed]
  29. K. J. Rowland, S. Afshar, and T. M. Monro, “Novel low-loss bandgaps in all-silica Bragg fibers,” J. Light-wave Technol. 26, 43–51 (2008). [CrossRef]
  30. W. J. Hsueh, S. J. Wun, and T. H. Yu, “Characterization of omnidirectional bandgaps in multiple frequency ranges of one-dimensional photonic crystals,” J. Opt. Soc. Am. B 27, 1092–1098 (2010). [CrossRef]
  31. MIT Photonics Bandgap Fibers and Devices Group material database, http://mit-pbg.mit.edu/Pages/DataBase.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited