OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 489–507

Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter

Arvin Emadi, Huaiwen Wu, Ger de Graaf, and Reinoud Wolffenbuttel  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 489-507 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the concept of a microspectrometer based on a Linear Variable Optical Filter (LVOF) for operation in the visible spectrum is presented and used in two different designs: the first is for the narrow spectral band between 610 nm and 680 nm, whereas the other is for the wider spectral band between 570 nm and 740 nm. Design considerations, fabrication and measurement results of the LVOF are presented. An iterative signal processing algorithm based on an initial calibration has been implemented to enhance the spectral resolution. Experimental validation is based on the spectrum of a Neon lamp. The results of measurements have been used to analyze the operating limits of the concept and to explain the sources of error in the algorithm. It is shown that the main benefits of a LVOF-based microspectrometer are in case of implementation in a narrowband application. The realized LVOF microspectrometers show a spectral resolution of 2.2 nm in the wideband design and 0.7 nm in the narrowband design.

© 2011 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.6190) Spectroscopy : Spectrometers
(310.4165) Thin films : Multilayer design

ToC Category:

Original Manuscript: September 28, 2011
Revised Manuscript: November 14, 2011
Manuscript Accepted: November 29, 2011
Published: December 21, 2011

Arvin Emadi, Huaiwen Wu, Ger de Graaf, and Reinoud Wolffenbuttel, "Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter," Opt. Express 20, 489-507 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005). [CrossRef]
  2. G. Minas, R. F. Wolffenbuttel, and J. H. Correia, “A lab-on-a-chip for spectrophotometric analysis of biological fluids,” Lab Chip 5(11), 1303–1309 (2005). [CrossRef] [PubMed]
  3. J. H. Correia, G. de Graaf, S. H. Kong, M. Bartek, and R. F. Wolffenbuttel, “Single-chip CMOS optical microspectrometer,” Sens. Actuators A Phys. 82(1-3), 191–197 (2000). [CrossRef]
  4. S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88(2), 281–284 (2007). [CrossRef]
  5. R. R. McLeod and T. Honda, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Opt. Lett. 30(19), 2647–2649 (2005). [CrossRef] [PubMed]
  6. A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “CMOS-compatible LVOF-based visible microspectrometer,” Proc. SPIE 7680, 76800W (2010). [CrossRef]
  7. A. Emadi, S. Grabarnik, H. Wu, G. de Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Spectral measurement using IC-compatible linear variable optical filter,” Proc. SPIE 7716, 77162G (2010). [CrossRef]
  8. A. Emadi, H. Wu, S. Grabarnik, G. De Graaf, K. Hedsten, P. Enoksson, J. H. Correia, and R. F. Wolffenbuttel, “Fabrication and characterization of IC-compatible linear variable optical filters with application in a micro-spectrometer,” Sens. Actuators A Phys. 162(2), 400–405 (2010). [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed., 360–376 (Cambridge University Press, 1999).
  10. A. Emadi, H. Wu, S. Grabarnik, G. de Graaf, and R. F. Wolffenbuttel, “Vertically tapered layers for optical applications fabricated using resist reflow,” J. Micromech. Microeng. 19(7), 074014 (2009). [CrossRef]
  11. A. Emadi, “Linear-variable optical filters for microspectrometer application,” PhD Thesis, Technical University of Delft (2010).
  12. V. Krajicek and M. Vrbova, “Laser-induced fluorescence spectra of plants,” Remote Sens. Environ. 47(1), 51–54 (1994). [CrossRef]
  13. K. Burns, K. B. Adams, and J. Longwell, “Interference measurements in the spectra of neon and natural mercury,” J. Opt. Soc. Am. 40(6), 339–344 (1950). [CrossRef]
  14. NIST atomic spectra database, Online: http://www.nist.gov/pml/data/asd.cfm
  15. M. P. Wisniewski, R. Z. Morawski, and A. Barwicz, “Algorithms for interpretation of spectrometric data- A comparative study,” Instrumentation and Measurement Technology Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE, 2, 703–706 (2000).
  16. D. Massicotte, R. Z. Morawski, and A. Barwicz, “Kalman-filter-based algorithms of spectrometric data correction-Part I: an iterative algorithm of deconvolution,” IEEE Trans. Instrum. Meas. 46(3), 678–684 (1997). [CrossRef]
  17. M. H. Hayes and H. Monson, “Recursive least squares,” in Statistical Digital Signal Processing and Modeling (Wiley, 1996), ch. 9.4.
  18. S. Grabarnik, A. Emadi, H. Wu, G. de Graaf, and R. F. Wolffenbuttel, “High-resolution microspectrometer with an aberration-correcting planar grating,” Appl. Opt. 47(34), 6442–6447 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited