OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 524–533

A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion

Tomasz J. Antosiewicz, S. Peter Apell, Virginia Claudio, and Mikael Käll  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 524-533 (2012)
http://dx.doi.org/10.1364/OE.20.000524


View Full Text Article

Enhanced HTML    Acrobat PDF (2762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrasensitive detectors based on localized surface plasmon resonance refractive index sensing are capable of detecting very low numbers of molecules for biochemical analysis. It is well known that the sensitivity of such sensors crucially depends on the spatial distribution of the electromagnetic field around the metal surface. However, the precise connection between local field enhancement and resonance shift is seldom discussed. Using a quasistatic approximation, we developed a model that relates the sensitivity of a nanoplasmonic resonator to the local field in which the analyte is placed. The model, corroborated by finite-difference time-domain simulations, may be used to estimate the magnitude of the shift as a function of the properties of the sensed object – permittivity and volume – and its location on the surface of the resonator. It requires only a computation of the resonant field induced by the metal structure and is therefore suitable for numerical optimization of nanoplasmonic sensors.

© 2011 OSA

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6680) Optics at surfaces : Surface plasmons
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 3, 2011
Revised Manuscript: November 4, 2011
Manuscript Accepted: November 9, 2011
Published: December 21, 2011

Citation
Tomasz J. Antosiewicz, S. Peter Apell, Virginia Claudio, and Mikael Käll, "A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion," Opt. Express 20, 524-533 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or miltiple epitopes,” Analyst123, 1599–1603 (1998). [CrossRef] [PubMed]
  2. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25, 372–374 (2000). [CrossRef]
  3. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc.123, 1471–1482 (2001). [CrossRef]
  4. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74, 504–509 (2002). [CrossRef] [PubMed]
  5. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002). [CrossRef] [PubMed]
  6. H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based aurface plasmon resonance sensors,” Sens. Actuators B Chem.87, 244–249 (2002). [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  8. J. Homola, Surface plasmon resonance based sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, Berlin-Heidelberg-New York, 2006). [CrossRef]
  9. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering,” Phys. Rev. E62, 4318–4324 (2000). [CrossRef]
  10. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999). [CrossRef]
  11. L. Rodríguez-Lorenzo, R. A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L. M. Liz-Marzán, and F. J. G. de Abajo, “Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering,” J. Am. Chem. Soc.131, 4616–4618 (2009). [CrossRef] [PubMed]
  12. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano3, 1988–1994 (2009). [CrossRef] [PubMed]
  13. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nan-odumbbells for single-molecule detection,” Nat. Mater.9, 60–67 (2010). [CrossRef]
  14. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett.9, 2311–2315 (2009). [CrossRef] [PubMed]
  15. T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett.8, 3450–2455 (2008). [CrossRef] [PubMed]
  16. T. Davis, D. Gómez, and K. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B81, 045423 (2010). [CrossRef]
  17. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B79, 155423 (2009). [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, Inc., New York, 1999).
  19. A. Pinchuk and G. Schatz, “Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate,” Nanotechnology16, 2209–2217 (2005). [CrossRef] [PubMed]
  20. B. Rolly, B. Stout, and N. Bonod, “Metallic dimers: When bonding transverse modes shine light,” Phys. Rev. B84, 125420 (2011). [CrossRef]
  21. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett.97, 206806 (2006). [CrossRef] [PubMed]
  22. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  23. O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5, 748–760 (2011). [CrossRef] [PubMed]
  24. J. R. Zurita-Sánchez, “Quasi-static electromagnetic fields created by an electric dipole in the vicinity of a dielectric sphere: method of images,” Rev. Mex. Fis.55, 443–449 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited