OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 576–582

CO2 laser induced refractive index changes in optical polymers

Qing Liu, Kin Seng Chiang, Laurence Reekie, and Yuk Tak Chow  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 576-582 (2012)
http://dx.doi.org/10.1364/OE.20.000576


View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10−3, while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(160.5470) Materials : Polymers
(250.5460) Optoelectronics : Polymer waveguides
(160.5335) Materials : Photosensitive materials

ToC Category:
Laser Microfabrication

History
Original Manuscript: October 14, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 8, 2011
Published: December 22, 2011

Citation
Qing Liu, Kin Seng Chiang, Laurence Reekie, and Yuk Tak Chow, "CO2 laser induced refractive index changes in optical polymers," Opt. Express 20, 576-582 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000). [CrossRef]
  2. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol.14(7), 1704–1713 (1996). [CrossRef]
  3. J. S. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, and M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett.39(4), 394–395 (2003). [CrossRef]
  4. L. Y. Chen, W. S. Tsai, W. H. Hsu, K. Y. Chen, and W. S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron.43(4), 303–310 (2007). [CrossRef]
  5. W. C. Wang, M. Fisher, A. Yacoubian, and J. Menders, “Phase-shifted Bragg grating filters in polymer waveguides,” IEEE Photon. Technol. Lett.15(4), 548–550 (2003). [CrossRef]
  6. D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005). [CrossRef]
  7. K. P. Lor, K. S. Chiang, Q. Liu, and H. P. Chan, “Ultraviolet writing of buried waveguide devices in epoxy-coated benzocyclobutene,” Opt. Eng.48(4), 044601 (2009). [CrossRef]
  8. C. Dinger, T. Sterkenburgh, T. Holler, and H. Franke, “Patterning multimode polymeric lightguides using a CO2 laser,” Proc. SPIE1774, 278–287 (1993). [CrossRef]
  9. S. S. Zakariyah, P. P. Conway, D. A. Hutt, D. R. Selviah, K. Wang, H. Baghsiahi, J. Rygate, J. Calver, and W. Kandulski, “Polymer optical waveguide fabrication using laser ablation,” in Proceedings of IEEE Conference on Electronics Packaging Technology (Institute of Electrical and Electronics Engineers, New York, 2009), 936–941.
  10. L. Ç. Özcan, F. Guay, R. Kashyap, and L. Martinu, “Investigation of refractive index modifications in CW CO2 laser written planar optical waveguides,” Opt. Commun.281(14), 3686–3690 (2008). [CrossRef]
  11. Q. Liu and K. S. Chiang, “CO2-laser writing of polymer long-period waveguide gratings,” in Proceedings of IEEE Conference on Photonics Global Singapore (Institute of Electrical and Electronics Engineers, New York, 2008), C62–C65.
  12. F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett.7(5), 535–537 (1995). [CrossRef]
  13. Dow Chemical Company, Processing Procedures, http://www.dow.com/cyclotene/prod/302235.htm .
  14. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express15(26), 17645–17651 (2007). [CrossRef] [PubMed]
  15. H. W. Lee and K. S. Chiang, “CO2 laser writing of long-period fiber grating in photonic crystal fiber under tension,” Opt. Express17(6), 4533–4539 (2009). [CrossRef] [PubMed]
  16. B. H. Stuart, Infrared Spectroscopy: Fundamentals, and Applications (Wiley, Chichester, 2004).
  17. D. W. Zeng and K. C. Yung, “XPS investigation on Upilex-S polyimide ablated by pulse TEA CO2 laser,” Appl. Surf. Sci.180(3-4), 280–285 (2001). [CrossRef]
  18. A. Hartwig, G. Vitr, S. Dieckhoff, and O.-D. Hennemann, “Surface treatment of an epoxy resin by CO2 laser irradiation,” Die Angew. Makromol. Chem.238(1), 177–189 (1996). [CrossRef]
  19. M. Dadsetan, H. Miradeh, and N. Sharifi, “Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate,” Radiat. Phys. Chem.56(5-6), 597–604 (1999). [CrossRef]
  20. W. W. Duley and R. E. Mueller, “CO2 laser welding of polymers,” Polym. Eng. Sci.32(9), 582–585 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited