OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 593–600

Enhanced resolution in subsurface near-field optical microscopy

Roman Krutokhvostov, Alexander A. Govyadinov, Johannes M. Stiegler, Florian Huth, Andrey Chuvilin, P. Scott Carney, and Rainer Hillenbrand  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 593-600 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental analysis of the capabilities of scattering-type scanning near-field optical microscopy for mapping sub-surface features at varying depths. For the first time, we demonstrate experimentally that both the spatial resolution and depth contrast can be improved in subsurface microscopy by demodulating the measured near-field signal at higher harmonics of the probe’s tapping frequency and by operating at smaller tapping amplitudes. Our findings are qualitatively supported by a simple dipole model.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: November 2, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 9, 2011
Published: December 22, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Roman Krutokhvostov, Alexander A. Govyadinov, Johannes M. Stiegler, Florian Huth, Andrey Chuvilin, P. Scott Carney, and Rainer Hillenbrand, "Enhanced resolution in subsurface near-field optical microscopy," Opt. Express 20, 593-600 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399, 134–137 (1999). [CrossRef]
  2. B. B. Akhremitchev, S. Pollack, and G. C. Walker, “Apertureless scanning near-field infrared microscopy of a rough polymeric surface,” Langmuir 17, 2774–2781 (2001). [CrossRef]
  3. R. Hillenbrand and F. Keilmann, “Material-specific mapping of metalsemiconductordielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80, 25–27 (2002). [CrossRef]
  4. Z. H. Kim, S.-H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7, 2258–2262 (2007). [CrossRef] [PubMed]
  5. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008). [CrossRef] [PubMed]
  6. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10, 1387–1392 (2010). [CrossRef] [PubMed]
  7. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat Mater 10, 352–356 (2011). [CrossRef] [PubMed]
  8. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering,” Appl. Phys. Lett. 83, 5089–5091 (2003). [CrossRef]
  9. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13, 8893–8899 (2005). [CrossRef] [PubMed]
  10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a sic superlens,” Science 313, 1595 (2006). [CrossRef] [PubMed]
  11. J.-S. Samson, G. Wollny, E. Brundermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (snim): Imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8, 753–758 (2006). [CrossRef] [PubMed]
  12. G. Wollny, E. Bründermann, Z. Arsov, L. Quaroni, and M. Havenith, “Nanoscale depth resolution in scanning near-field infrared microscopy,” Opt. Express 16, 7453–7459 (2008). [CrossRef] [PubMed]
  13. J. Sun, J. Schotland, R. Hillenbrand, and P. S. Carney, “Nanoscale optical tomography using volume-scanning near-field microscopy,” Appl. Phys. Lett. 95, 121108 (2009). [CrossRef]
  14. R. Jacob, S. Winnerl, H. Schneider, M. Helm, M. T. Wenzel, H.-G. von Ribbeck, L. M. Eng, and S. C. Kehr, “Quantitative determination of the charge carrier concentration of ion implanted silicon by ir-near-field spectroscopy,” Opt. Express 18, 26206–26213 (2010). [CrossRef] [PubMed]
  15. R. Hillenbrand and F. Keilmann, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004). [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  17. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000). [CrossRef] [PubMed]
  18. T. Taubner, F. Keilmann, and R. Hillenbrand, “Effect of tip modulation on image contrast in scattering-type near-field optical microscopy,” J. Kor. Phys. Soc. 47, S213–S216 (2005).
  19. Z. Nuño, B. Hessler, J. Ochoa, Y.-S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19, 20865–20875 (2011). [CrossRef] [PubMed]
  20. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006). [CrossRef]
  21. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microscopy 210, 311–314 (2003). [CrossRef]
  22. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992). [CrossRef] [PubMed]
  23. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17, 2518–2529 (2009). [CrossRef] [PubMed]
  24. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole chain,” J. Mod. Opt. 40, 2281–2291 (1993). [CrossRef]
  25. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995). [CrossRef] [PubMed]
  26. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Comm. 182, 321–328 (2000). [CrossRef]
  27. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000). [CrossRef]
  28. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418, 159–162 (2002). [CrossRef] [PubMed]
  29. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006). [CrossRef] [PubMed]
  30. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7, 3177–3181 (2007). [CrossRef] [PubMed]
  31. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15, 8550–8565 (2007). [CrossRef] [PubMed]
  32. J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5, 6494–6499 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited