OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 63–74

Time-of-flight imaging of invisibility cloaks

Jad C. Halimeh and Martin Wegener  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 63-74 (2012)
http://dx.doi.org/10.1364/OE.20.000063


View Full Text Article

Enhanced HTML    Acrobat PDF (3809 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As invisibility cloaking has recently become experimental reality, it is interesting to explore ways to reveal remaining imperfections. In essence, the idea of most invisibility cloaks is to recover the optical path lengths without an object (to be made invisible) by a suitable arrangement around that object. Optical path length is proportional to the time of flight of a light ray or to the optical phase accumulated by a light wave. Thus, time-of-flight images provide a direct and intuitive tool for probing imperfections. Indeed, recent phase-sensitive experiments on the carpet cloak have already made early steps in this direction. In the macroscopic world, time-of-flight images could be measured directly by light detection and ranging (LIDAR). Here, we show calculated time-of-flight images of the conformal Gaussian carpet cloak, the conformal grating cloak, the cylindrical free-space cloak, and of the invisible sphere. All results are obtained by using a ray-velocity equation of motion derived from Fermat’s principle.

© 2011 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.2710) Geometric optics : Inhomogeneous optical media
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 9, 2011
Published: December 19, 2011

Citation
Jad C. Halimeh and Martin Wegener, "Time-of-flight imaging of invisibility cloaks," Opt. Express 20, 63-74 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-63


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010). [CrossRef] [PubMed]
  4. U. Leonhardt and T. G. Philbin, Geometry and Light: The Science of Invisibility (Dover, Mineola, 2010).
  5. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science323(5910), 110–112 (2009). [CrossRef] [PubMed]
  6. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  7. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  9. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  10. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  12. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun.1(3), 1–6 (2010). [CrossRef] [PubMed]
  13. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett.106(3), 033901 (2011). [CrossRef] [PubMed]
  14. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011). [CrossRef] [PubMed]
  15. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011). [CrossRef] [PubMed]
  16. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011). [CrossRef] [PubMed]
  17. T. Ergin, J. Fischer, and M. Wegener, “Optical phase cloaking of 700-nm light waves in the far field by a three-dimensional carpet cloak,” Phys. Rev. Lett.107(17), 173901 (2011). [CrossRef]
  18. R. Schmied, J. C. Halimeh, and M. Wegener, “Conformal carpet and grating cloaks,” Opt. Express18(23), 24361–24367 (2010). [CrossRef] [PubMed]
  19. J. C. Halimeh, R. Schmied, and M. Wegener, “Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment,” Opt. Express19(7), 6078–6092 (2011). [CrossRef] [PubMed]
  20. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  21. A. Akbarzadeh and A. J. Danner, “Generalization of ray tracing in a linear inhomogeneous anisotropic medium: a coordinate-free approach,” J. Opt. Soc. Am. A27(12), 2558–2562 (2010). [CrossRef] [PubMed]
  22. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Vol. 8 (Butterworth-Heinemann, Oxford, 1984).
  23. M. Born and E. Wolf, Principles of Optics, 7th. ed. (University Press, Cambridge, 1999).
  24. A. J. Danner, “Visualizing invisibility: metamaterials-based optical devices in natural environments,” Opt. Express18(4), 3332–3337 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited