OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 698–705

Laser conditioning on HfO2 film monitored by calorimeter

Liu Hao, Chen Songlin, Wei Yaowei, Zhang Zhe, Luo Jin, Zheng Nan, and Ma Ping  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 698-705 (2012)
http://dx.doi.org/10.1364/OE.20.000698


View Full Text Article

Enhanced HTML    Acrobat PDF (1506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conditioning effect on HfO2 single-layer film by quasi-cw laser was investigated. The conditioning process was monitored with laser calorimeter. Experimental results revealed that the HfO2 film absorption decreased as a function of the irradiation dose. Higher laser power accelerated the conditioning process. The conditioning effect could not be explained by water annihilation. AFM pictures of the film surface showed that the structural information in the conditioned region was different from the unconditioned region. Monitoring the in situ absorption, laser calorimeter is a promising tool to investigate the laser conditioning process.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 14, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 12, 2011
Published: December 23, 2011

Citation
Liu Hao, Chen Songlin, Wei Yaowei, Zhang Zhe, Luo Jin, Zheng Nan, and Ma Ping, "Laser conditioning on HfO2 film monitored by calorimeter," Opt. Express 20, 698-705 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Stolz, C. L. Weinzapfel, A. L. Rigatti, J. B. Oliver, J. Taniguchi, R. P. Bevis, and J. S. Rajasansi, “Fabrication of meter-scale laser-resistant mirrors for the National Ignition Facility, a fusion laser,” Proc. SPIE5193, 50–58 (2004). [CrossRef]
  2. L. Sheehan, M. Kozlowski, F. Rainer, and M. Staggs, “Large-area conditioning of optics for high-power laser systems,” Proc. SPIE2114, 559–568 (1994). [CrossRef]
  3. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods in hafnia silica multilayer mirrors,” Proc. SPIE3264, 105–112 (1998). [CrossRef]
  4. Y. A. Zhao, G. H. Hu, J. D. Shao, X. F. Liu, H. B. He, and Z. X. Fan, “Laser conditioning process combining N/1 and S/1 programs to improve the damage resistance of KDP crystals,” Proc. SPIE7504, 75041L (2009). [CrossRef]
  5. A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE4347, 53–61 (2001). [CrossRef]
  6. H. Bercegol, “What is laser conditioning? a review focused on dielectric multilayers,” Proc. SPIE3578, 421–426 (1999). [CrossRef]
  7. M. R. Kozlowski, M. Staggs, and F. Rainer, “Laser conditioning and electronic defects of HfO2 and SiO2 thin films,” Proc. SPIE1441, 269–282 (1991). [CrossRef]
  8. R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Absorption influenced laser damage resistance of Ta2O5 coatings,” Opt. Acta (Lond.)33(7), 919–924 (1986). [CrossRef]
  9. R. Wolf, G. Zscherpe, E. Welsch, V. Goepner, and D. Schafer, “Ageing influence on the absorption and laser damage resistance of Ta2O5 thin films,” J. Mod. Opt.34(12), 1585–1588 (1987). [CrossRef]
  10. A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, “Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,” Opt. Express11(20), 2497–2501 (2003). [CrossRef] [PubMed]
  11. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt.40(12), 1897–1906 (2001). [CrossRef] [PubMed]
  12. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011). [CrossRef]
  13. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, and E. Hacker, “Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt.35(28), 5613–5619 (1996). [CrossRef] [PubMed]
  14. ISO 11551: “Optics and optical instruments-Lasers and laser-related equipment-Test method for absorptance of optical laser components” (2003).
  15. U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt.37(36), 8362–8370 (1998). [CrossRef] [PubMed]
  16. L. O. Jensen, I. Balasa, H. Blaschke, and D. Ristau, “Novel technique for the determination of hydroxyl distributions in fused silica,” Opt. Express17(19), 17144–17149 (2009). [CrossRef] [PubMed]
  17. G. Duchateau, “Modeling laser conditioning of KDP crystals,” Proc. SPIE7504, 75041K (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited