OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10453–10469

Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits

Charles A. Foell, Ellen Schelew, Haijun Qiao, Keith A. Abel, Stephen Hughes, Frank C. J. M. van Veggel, and Jeff F. Young  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10453-10469 (2012)
http://dx.doi.org/10.1364/OE.20.010453


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report coupling of the excitonic photon emission from photoexcited PbSe colloidal quantum dots (QDs) into an optical circuit that was fabricated in a silicon-on-insulator wafer using a CMOS-compatible process. The coupling between excitons and sub-μm sized silicon channel waveguides was mediated by a photonic crystal microcavity. The intensity of the coupled light saturates rapidly with the optical excitation power. The saturation behaviour was quantitatively studied using an isolated photonic crystal cavity with PbSe QDs site-selectively located at the cavity mode antinode position. Saturation occurs when a few μW of continuous wave HeNe pump power excites the QDs with a Gaussian spot size of 2 μm. By comparing the results with a master equation analysis that rigorously accounts for the complex dielectric environment of the QD excitons, the saturation is attributed to ground state depletion due to a non-radiative exciton decay channel with a trap state lifetime ∼ 3 μs.

© 2012 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.5580) Quantum optics : Quantum electrodynamics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Materials for Integrated Optics

History
Original Manuscript: January 23, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 27, 2012
Published: April 20, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

Citation
Charles A. Foell, Ellen Schelew, Haijun Qiao, Keith A. Abel, Stephen Hughes, Frank C. J. M. van Veggel, and Jeff F. Young, "Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits," Opt. Express 20, 10453-10469 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010). [CrossRef]
  2. D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004). [CrossRef]
  3. M. Toishi, D. Englund, A. Faraon, and J. Vučković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009). [CrossRef]
  4. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]
  5. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011). [CrossRef]
  6. V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007). [CrossRef]
  7. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007). [CrossRef]
  8. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99, 023902 (2007). [CrossRef] [PubMed]
  9. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101, 113903 (2008). [CrossRef] [PubMed]
  10. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011). [CrossRef]
  11. S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008). [CrossRef]
  12. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010). [CrossRef]
  13. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 μm,” IEEE Photonics Technol. Lett. 22, 1530–1532 (2010). [CrossRef]
  14. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010). [CrossRef]
  15. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011). [CrossRef] [PubMed]
  16. T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III–V nanowires on silicon,” Nano Lett. 4, 1987–1990 (2004). [CrossRef]
  17. A. L. Roest, M. A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, and E. P. A. M. Bakkers, “Position-controlled epitaxial III–V nanowires on silicon,” Nanotechnology 17, S271–S275 (2006). [CrossRef]
  18. M. H. Hadj Alouane, R. Anufriev, N. Chauvin, H. Khmissi, K. Naji, B. Ilahi, H. Maaref, G. Patriarche, M. Gendry, and C. Bru-Chevallier, “Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate,” Nanotechnology 22, 405702 (2011). [CrossRef]
  19. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90, 111117 (2007). [CrossRef]
  20. S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E 78, 045603 (2008). [CrossRef]
  21. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110 (2008). [CrossRef]
  22. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849–2854 (2009). [CrossRef] [PubMed]
  23. R. Bose, J. F. McMillan, J. Gao, and C. W. Wong, “Solution-processed cavity and slow-light quantum electrodynamics in near-infrared silicon photonic crystals,” Appl. Phys. Lett. 95, 131112 (2009). [CrossRef]
  24. R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009). [CrossRef]
  25. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19, 1786–1793 (2011). [CrossRef] [PubMed]
  26. J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35, 547–549 (2010). [CrossRef] [PubMed]
  27. T. S. Luk, S. Xiong, W. W. Chow, X. Miao, G. Subramania, P. J. Resnick, A. J. Fischer, and J. C. Brinker, “Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity,” J. Opt. Soc. Am. B 28, 1365–1373 (2011). [CrossRef]
  28. ePIXfab: http://www.epixfab.eu/ .
  29. IMEC: http://www.imec.be/ .
  30. M. G. Banaee, A. G. Pattantyus-Abraham, M. W. McCutcheon, G. W. Rieger, and J. F. Young, “Efficient coupling of photonic crystal microcavity modes to a ridge waveguide,” Appl. Phys. Lett. 90, 193106 (2007).
  31. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47–56 (2001). [CrossRef]
  32. J. W. Stouwdam, J. Shan, F. C. J. M. van Veggel, A. G. Pattantyus-Abraham, J. F. Young, and M. Raudsepp, “Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state,” J. Phys. Chem. C 111, 1086–1092 (2007). [CrossRef]
  33. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett. 103, 087405 (2009). [CrossRef] [PubMed]
  34. P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot-cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B 81, 033309 (2010). [CrossRef]
  35. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
  36. C. Roy and S. Hughes, “Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects,” Phys. Rev. Lett. 106, 247403 (2011). [CrossRef] [PubMed]
  37. S. M. Ulrich, S. Ates, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, “Dephasing of triplet-sideband optical emission of a resonantly driven InAs/GaAs quantum dot inside a microcavity,” Phys. Rev. Lett. 106, 247402 (2011). [CrossRef] [PubMed]
  38. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106, 227402 (2011). [CrossRef] [PubMed]
  39. S. Hughes, P. Yao, F. Milde, A. Knorr, D. Dalacu, K. Mnaymneh, V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, R. Cheriton, and R. L. Williams, “Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system,” Phys. Rev. B 83, 165313 (2011). [CrossRef]
  40. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Impact of electron-phonon interactions on quantum-dot cavity quantum electrodynamics,” E-print: arXiv:0908.0788v1.
  41. J. M. Harbold and F. W. Wise, “Photoluminescence spectroscopy of PbSe nanocrystals,” Phys. Rev. B 76, 125304 (2007). [CrossRef]
  42. H. Qiao, K. A. Abel, F. C. J. M. van Veggel, and J. F. Young, “Exciton thermalization and state broadening contributions to the photoluminescence of colloidal PbSe quantum dot films from 295 to 4.5 K,” Phys. Rev. B 82, 165435 (2010). [CrossRef]
  43. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett. 2, 1321–1324 (2002). [CrossRef]
  44. K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett. 1, 2334–2338 (2010). [CrossRef]
  45. L. Zhu, S. Samudrala, N. Stelmakh, and M. Vasilyev, “Spontaneous decay of CdSe/ZnS core-shell quantum dots at the air-dielectric interface,” Opt. Express 20, 3144–3151 (2012). [CrossRef] [PubMed]
  46. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988). [CrossRef] [PubMed]
  47. Lumerical Solutions, Inc.: http://www.lumerical.com/ .
  48. I. Moreels, K. Lambert, D. Smeets, D. D. Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3, 3023–3030 (2009). [CrossRef] [PubMed]
  49. B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett. 97, 161908 (2010). [CrossRef]
  50. S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999). [CrossRef]
  51. S. M. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992). [CrossRef] [PubMed]
  52. T. Okuno, Y. Masumoto, M. Ikezawa, T. Ogawa, and A. A. Lipovskii, “Size-dependent picosecond energy relaxation in PbSe quantum dots,” Appl. Phys. Lett. 77, 504–506 (2000). [CrossRef]
  53. J. M. Harbold, H. Du, T. D. Krauss, K. Cho, C. B. Murray, and F. W. Wise, “Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals,” Phys. Rev. B 72, 195312 (2005). [CrossRef]
  54. C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, “Subpicosecond near-infrared fluorescence upconversion study of relaxation processes in PbSe quantum dots,” Phys. Rev. B 76, 033304 (2007). [CrossRef]
  55. J. M. An, M. Califano, A. Franceschetti, and A. Zunger, “Excited-state relaxation in PbSe quantum dots,” J. Chem. Phys. 128, 164720 (2008). [CrossRef] [PubMed]
  56. H. Bao, B. F. Habenicht, O. V. Prezhdo, and X. Ruan, “Temperature dependence of hot-carrier relaxation in PbSe nanocrystals: An ab initio study,” Phys. Rev. B 79, 235306 (2009). [CrossRef]
  57. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81, 235319 (2010). [CrossRef]
  58. N. Suzuki, K. Sawai, and S. Adachi, “Optical properties of PbSe,” J. Appl. Phys. 77, 1249–1255 (1995). [CrossRef]
  59. M. Colocci, A. Vinattieri, L. Lippi, F. Bogani, M. Rosa-Clot, S. Taddei, A. Bosacchi, S. Franchi, and P. Frigeri, “Controlled tuning of the radiative lifetime in InAs self-assembled quantum dots through vertical ordering,” Appl. Phys. Lett. 74, 564–566 (1999). [CrossRef]
  60. M. Paillard, X. Marie, E. Vanelle, T. Amand, V. K. Kalevich, A. R. Kovsh, A. E. Zhukov, and V. M. Ustinov, “Time-resolved photoluminescence in self-assembled InAs/GaAs quantum dots under strictly resonant excitation,” Appl. Phys. Lett. 76, 76–78 (2000). [CrossRef]
  61. L. Kong, Z. C. Feng, Z. Wu, and W. Lu, “Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure,” J. Appl. Phys. 106, 013512 (2009). [CrossRef]
  62. P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77, 262–264 (2000). [CrossRef]
  63. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002). [CrossRef]
  64. K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82, 4552–4554 (2003). [CrossRef]
  65. D. C. Wu, J. K. Kao, M. H. Mao, F. Y. Chang, and H. H. Lin, “Determination of interband transition dipole moment of InAs/InGaAs quantum dots from modal absorption spectra,” in “OSA Technical Digest Series (CD),” (Optical Society of America, 2007), p. JTuA111.
  66. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).
  67. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, “Spontaneous emission rates of dipoles in photonic crystal membranes,” J. Opt. Soc. Am. B 23, 1196–1206 (2006). [CrossRef]
  68. P. T. Kristensen, C. Van Vlack, and S. Hughes, “Effective mode volumes and purcell factors for leaky optical cavities,” E-print: arXiv:1107.4601; see also AIP Conference Proceedings1398, 100–102 (2011).
  69. I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, and Z. Hens, “Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots,” Chem. Mater. 19, 6101–6106 (2007). [CrossRef]
  70. Westgrid: www.westgrid.ca/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited