OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10476–10483

Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots

Dae Hun Kim, Young Hun Lee, Dea Uk Lee, Tae Whan Kim, Sungwoo Kim, and Sang Wook Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10476-10483 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-efficiency organic photovoltaic (OPV) cells utilizing a poly(3-hexylthiophene) (P3HT) pillar layer containing ZnSe quantum dots (QDs) were fabricated by using a mixed solution method. Scanning electron microscopy and high-resolution transmission electron microscopy images showed that the ZnSe QDs were dispersed in the P3HT layer. The power conversion efficiency of the OPV cells with a P3HT pillar layer containing ZnSe QDs was as much as 100% higher than that of the OPV cells with a planar layer due to an enhancement of the photon-harvesting ability of the congregated P3HT particles containing ZnSe QDs and to an increase of the interfacial region for efficient charge transport.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5350) Detectors : Photovoltaic
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: February 15, 2012
Manuscript Accepted: March 19, 2012
Published: April 20, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

Dae Hun Kim, Young Hun Lee, Dea Uk Lee, Tae Whan Kim, Sungwoo Kim, and Sang Wook Kim, "Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots," Opt. Express 20, 10476-10483 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett.86(6), 063502 (2005). [CrossRef]
  2. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007). [CrossRef] [PubMed]
  3. J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D. Y. Kim, and K. Cho, “Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics,” Appl. Phys. Lett.91(11), 112111 (2007). [CrossRef]
  4. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.)21(13), 1323–1338 (2009). [CrossRef]
  5. A. L. Ayzner, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, “Reappraising the need for bulk heterojunctions in polymer−fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells,” J. Phys. Chem. C113(46), 20050–20060 (2009). [CrossRef]
  6. K. H. Lee, P. E. Schwenn, A. R. G. Smith, G. Cavaye, P. E. Shaw, M. James, K. B. Krueger, I. R. Gentle, P. Meredith, and P. L. Burn, “Morphology of all-solution-processed ‘Bilayer’ organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(6), 766–770 (2011). [CrossRef]
  7. F. Yang, M. Shtein, and S. R. Forrest, “Controlled growth of a molecular bulk heterojunction photovoltaic cell,” Nat. Mater.4(1), 37–41 (2005). [CrossRef]
  8. M. Aryal, K. Trivedi, and W. W. Hu, “Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography,” ACS Nano3(10), 3085–3090 (2009). [CrossRef] [PubMed]
  9. J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(16), 1810–1828 (2011). [CrossRef] [PubMed]
  10. L. H. Nguyen, H. Hoppe, T. Erb, S. Günes, G. Gobsch, and N. S. Sariciftci, “Effects of annealing on the nanomorphology and performance of poly(alkylthiophene):fullerene bulk-heterojunction solar cells,” Adv. Funct. Mater.17(7), 1071–1078 (2007). [CrossRef]
  11. R. A. Street and M. Schoendorf, “Interface state recombination in organic solar cells,” Phys. Rev. B81(20), 205307 (2010). [CrossRef]
  12. A. A. Bakulin, J. C. Hummelen, M. S. Pshenichnikov, and P. H. M. van Loosdrecht, “Ultrafast hole-transfer dynamics in polymer/PCBM bulk heterojunctions,” Adv. Funct. Mater.20(10), 1653–1660 (2010). [CrossRef]
  13. J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H. Park, J. K. Kim, and K. Cho, “Poly(3-hexylthiophene) nanorods with aligned chain orientation for organic photovoltaics,” Adv. Funct. Mater.20(4), 540–545 (2010). [CrossRef]
  14. F. A. Castro, H. Benmansour, C. F. O. Graeff, F. Nüesch, E. Tutis, and R. Hany, “Nanostructured organic layers via polymer demixing for interface-enhanced photovoltaic cells,” Chem. Mater.18(23), 5504–5509 (2006). [CrossRef]
  15. C. Wu, Y. Zheng, C. Szymanski, and J. McNeill, “Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles,” J. Phys. Chem. C112(6), 1772–1781 (2008). [CrossRef] [PubMed]
  16. C. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano2(11), 2415–2423 (2008). [CrossRef] [PubMed]
  17. D. Tuncel and H. V. Demir, “Conjugated polymer nanoparticles,” Nanoscale2(4), 484–494 (2010). [CrossRef] [PubMed]
  18. P. Brown and P. V. Kamat, “Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell,” J. Am. Chem. Soc.130(28), 8890–8891 (2008). [CrossRef] [PubMed]
  19. F. Li, S. H. Cho, D. I. Son, T. W. Kim, S.-K. Lee, Y.-H. Cho, and S. Jin, “UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures,” Appl. Phys. Lett.94(11), 111906 (2009). [CrossRef]
  20. D. I. Son, B. W. Kwon, J. D. Yang, D. H. Park, B. Angadi, and W. K. Choi, “High efficiency ultraviolet photovoltaic cells based on ZnO–C60 core–shell QDs with organic–inorganic multilayer structure,” J. Mater. Chem.22(3), 816–819 (2011). [CrossRef]
  21. D. H. Kim, Y. P. Jeon, S. H. Lee, D. U. Lee, T. W. Kim, and S. H. Han, “Enhancement of the power conversion efficiency for organic photovoltaic devices due to an embedded rugged nanostructural layer,” Org. Electron. (to be published). [CrossRef]
  22. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency,” Adv. Mater. (Deerfield Beach Fla.)18(6), 789–794 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited