OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10484–10489

Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing

Hong-Shi Ling, Shiang-Yu Wang, Wei-Cheng Hsu, and Chien-Ping Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10484-10489 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report voltage-tunable 3-5 μm & 8-12 μm dual-band detection in the InAs/Al0.3Ga0.7As/In0.15Ga0.85As confinement-enhanced dots-in-a-well quantum dot infrared photodetectors. The capability in temperature sensing is also demonstrated. Distinct response peaks at 5.0 μm and 8.6 μm were observed in the photocurrent spectra with working temperature up to 140K. The two peaks correspond to the transition paths from the quantum dot ground state to the quantum well state and the quantum dot excited state, respectively. At 77K, the response ratio of the 8.6 μm peak over the 5.0 μm peak changes from 0.29 at −3V to 5.8 at + 4.8V. Excellent selectivity between the two peaks with bias voltage makes the device attractive for third-generation imaging systems with pixel-level multicolor functionality.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5570) Detectors : Quantum detectors

ToC Category:

Original Manuscript: February 1, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: March 7, 2012
Published: April 20, 2012

Virtual Issues
Quantum Dots for Photonic Applications (2012) Optical Materials Express

Hong-Shi Ling, Shiang-Yu Wang, Wei-Cheng Hsu, and Chien-Ping Lee, "Voltage-tunable dual-band quantum dot infrared photodetectors for temperature sensing," Opt. Express 20, 10484-10489 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009). [CrossRef]
  2. A. Majumdar, K. K. Choi, J. L. Reno, L. P. Rokhinson, and D. C. Tsui, “Electron transfer based voltage tunable two-color quantum well infrared photodetectors,” Infrared Phys. Technol.44(5-6), 337–346 (2003). [CrossRef]
  3. B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993). [CrossRef]
  4. Y. Arslan, S. U. Eker, M. Kaldirim, and C. Besikci, “Large format voltage tunable dual-band QWIP FPAs,” Infrared Phys. Technol.52(6), 399–402 (2009). [CrossRef]
  5. P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation,” J. Appl. Phys.104(3), 034314 (2008). [CrossRef]
  6. Z. Chen, E. T. Kim, and A. Madhukar, “Normal-incidence voltage- tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots,” Appl. Phys. Lett.80(14), 2490–2492 (2002). [CrossRef]
  7. M. J. Meisner, J. Vaillancourt, and X. Lu, “Voltage-tunable dual-band InAs quantum-dot infrared photodetectors based on InAs quantum dots with different capping layers,” Semicond. Sci. Technol.23(9), 095016 (2008). [CrossRef]
  8. G. Ariyawansa, A. G. U. Perera, G. Huang, and P. Bhattacharya, “Wavelength agile superlattice quantum dot infrared photodetector,” Appl. Phys. Lett.94(13), 131109 (2009). [CrossRef]
  9. J. Huang, W. Ma, Y. Wei, Y. Zhang, Y. Huo, K. Cui, and L. Chen, “Two-color In0.4Ga0.6As/Al0.1Ga0.9As quantum dot infrared photodetector with double tunneling barriers,” Appl. Phys. Lett.98(10), 103501 (2011). [CrossRef]
  10. H. S. Ling, S. Y. Wang, and C. P. Lee, “Spectral response and device performance tuning of long-wavelength InAs QDIPs,” Infrared Phys. Technol.54(3), 233–236 (2011). [CrossRef]
  11. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors,” Appl. Phys. Lett.86(19), 193501 (2005). [CrossRef]
  12. J. Vaillancourt, P. Vasinajindakaw, X. Lu, A. Stintz, J. Bundas, R. Cook, D. Burrows, K. Patnaude, R. Dennis, A. Reisinger, and M. Sundaram, “A voltage-tunable multispectral 320 × 256 InAs/GaAs quantum-dot infrared focal plane array,” Semicond. Sci. Technol.24(4), 045008 (2009). [CrossRef]
  13. J. Andrews, W. Y. Jang, J. E. Pezoa, Y. D. Sharma, S. J. Lee, S. K. Noh, M. M. Hayat, S. Restaino, S. W. Teare, and S. Krishna, “Demonstration of a bias tunable quantum dots-in-a-well focal plane array,” Infrared Phys. Technol.52(6), 380–384 (2009). [CrossRef]
  14. H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “High quantum efficiency dots-in-a-well quantum dot infrared photodetectors with AlGaAs confinement enhancing layer,” Appl. Phys. Lett.92(19), 193506 (2008). [CrossRef]
  15. H.-S. Ling, S.-Y. Wang, C.-P. Lee, and M.-C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200K,” IEEE Photon. Technol. Lett.21(2), 118–120 (2009). [CrossRef]
  16. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “High performance InAs/GaAs quantum dot infrared photodetectors with AlGaAs current blocking layer,” Infrared Phys. Technol.42(3-5), 473–477 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited