OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10509–10518

Injection locking of Yb-fiber based optical frequency comb

Naoya Kuse, Akira Ozawa, Yutaka Nomura, Isao Ito, and Yohei Kobayashi  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10509-10518 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated the synchronization of offset and repetition frequency between two independent Yb-doped fiber mode-locked lasers by injection locking. By injecting master-laser pulse-train into slave laser cavity, stability and accuracy of master frequency comb are transferred to slave comb. Passive stabilization of frequency comb offers robust and convenient way to duplicate frequency comb that can be applied to long-distance comb transfer. Injecting master pulse would also help to initiate and stabilize mode-locking of high repetition rate or ultrabroadband frequency combs. Additionally, we also demonstrated even more robust synchronization of combs can be achieved with the help of active stabilization of relative offset frequency difference.

© 2012 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 14, 2012
Revised Manuscript: March 27, 2012
Manuscript Accepted: March 30, 2012
Published: April 23, 2012

Naoya Kuse, Akira Ozawa, Yutaka Nomura, Isao Ito, and Yohei Kobayashi, "Injection locking of Yb-fiber based optical frequency comb," Opt. Express 20, 10509-10518 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B27, B51–B62 (2010). [CrossRef]
  2. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett.100, 253901 (2008). [CrossRef] [PubMed]
  3. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett.33, 1099–1101 (2008). [CrossRef] [PubMed]
  4. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5W frequency comb at 2.8–4.8 μ m,” Opt. Lett.34, 1330–1332 (2009). [CrossRef] [PubMed]
  5. F. Adler, P. Maslowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express18, 21861–21872 (2010). [CrossRef] [PubMed]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008). [CrossRef] [PubMed]
  7. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010). [CrossRef]
  8. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A82, 043817 (2010). [CrossRef]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008). [CrossRef] [PubMed]
  10. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. L. Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405, L16–L20 (2010) [CrossRef]
  11. Z. Wei, Y. Kobayashi, and K. Torizuka, “Passive synchronization between femtosecond Ti:sapphire and Cr:forsterite lasers,” Appl. Phys. B74, S171–S176 (2002). [CrossRef]
  12. M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett.29, 2246–2248 (2004). [CrossRef] [PubMed]
  13. Y. Kobayashi, D. Yoshitomi, M. Kakehata, H. Takada, Y. Sakakibara, H. Kataura, and K. Torizuka, “Passive timing synchronization of femtosecond Er-fiber lasers and precise frequency comb control,” in Proc. European Conference on Optical Communications (ECOC’2006) (2006).
  14. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, K. Torizuka, T. Onuma, H. Yokoi, T. Sekiguchi, and S. Nakamura, “Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train,” Opt. Lett.31, 3243–3245 (2006). [CrossRef] [PubMed]
  15. D. Yoshitomi, X. Zhou, Y. Kobayashi, H. Takada, and K. Torizuka, “Long-term stable passive synchronization of 50 μJ femtosecond Yb-doped fiber chirped-pulse amplifier with a mode-locked Ti:sapphire laser,” Opt. Express18, 26027–26036 (2010). [CrossRef] [PubMed]
  16. M. Betz, F. Sortier, S. Trumm, A. Laubereau, and A. Leitenstorfer, “All-optical phase locking of two femtosecond Ti:sapphire lasers: a passive coupling mechanism beyond the slowly varying amplitude approximation,” Opt. Lett.29, 629–631 (2004). [CrossRef] [PubMed]
  17. Q. Quraishi, S. A. Diddams, Y. Kobayashi, and K. Torizuka, “Injenction-locked femtosecond Ti:sapphire lasers,” CLEO 2007CTuJ4, (2007).
  18. T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B102, 743–750 (2011). [CrossRef]
  19. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express16, 7055–7059 (2008). [CrossRef] [PubMed]
  20. N. Kuse, Y. Nomura, A. Ozawa, M. Kuwata-Gonokami, S. Watanabe, and Y. Kobayashi, “Self-compensation of third-order dispersion for ultrashort pulse generation demonstrated in an Yb fiber oscillator,” Opt. Lett.35, 3868–3870 (2010). [CrossRef] [PubMed]
  21. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett.16, 502–504 (1991). [CrossRef] [PubMed]
  22. A. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  23. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10W average power,” Nat. Photonics2, 355–359 (2008). [CrossRef]
  24. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett.35, 3015–3017 (2010). [CrossRef] [PubMed]
  25. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett.36, 1578–1580 (2011). [CrossRef] [PubMed]
  26. L. Fu, B. k. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16, 19629–19642 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited