OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10617–10634

Stabilized high-power laser system for the gravitational wave detector advanced LIGO

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10617-10634 (2012)
http://dx.doi.org/10.1364/OE.20.010617


View Full Text Article

Enhanced HTML    Acrobat PDF (1870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 18, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 4, 2012
Published: April 24, 2012

Citation
P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, "Stabilized high-power laser system for the gravitational wave detector advanced LIGO," Opt. Express 20, 10617-10634 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Rowan and J. Hough, “Gravitational wave detection by interferometry (ground and space),” Living Rev. Relativity3, 1–3 (2000).
  2. P. R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, 1994). [CrossRef]
  3. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav.27, 084006 (2010). [CrossRef]
  4. B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev.4, 780–794 (2010). [CrossRef]
  5. P. Kwee, “Laser characterization and stabilization for precision interferometry,” Ph.D. thesis, Universität Hannover (2010).
  6. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D73, 122005 (2006). [CrossRef]
  7. B. Willke, P. King, R. Savage, and P. Fritschel, “Pre-stabilized laser design requirements,” internal technical report T050036-v4, LIGO Scientific Collaboration (2009).
  8. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B102, 529–538 (2011). [CrossRef]
  9. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett.10, 65–67 (1985). [CrossRef] [PubMed]
  10. I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun.115, 511–515 (1995). [CrossRef]
  11. M. Frede, B. Schulz, R. Wilhelm, P. Kwee, F. Seifert, B. Willke, and D. Kracht, “Fundamental mode, single-frequency laser amplifier for gravitational wave detectors,” Opt. Express15, 459–465 (2007). [CrossRef] [PubMed]
  12. A. D. Farinas, E. K. Gustafson, and R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B12, 328–334 (1995). [CrossRef]
  13. R. Bork, M. Aronsson, D. Barker, J. Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, and K. Thorne, “New control and data acquisition system in the Advanced LIGO project,” Proc. of Industrial Control And Large Experimental Physics Control System (ICALEPSC) conference (2011).
  14. “Experimental physics and industrial control system,” http://www.aps.anl.gov/epics/ .
  15. P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt.47, 6022–6032 (2008). [CrossRef] [PubMed]
  16. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78, 073103 (2007). [CrossRef] [PubMed]
  17. A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, “A mode selector to suppress fluctuations in laser beam geometry,” Opt. Acta28, 641–658 (1981). [CrossRef]
  18. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner,” Opt. Lett.23, 1704–1706 (1998). [CrossRef]
  19. J. H. Pöld, “Stabilization of the Advanced LIGO 200 W laser,” Diploma thesis, Leibniz Universität Hannover (2009).
  20. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001). [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  22. A. Bullington, B. Lantz, M. Fejer, and R. Byer, “Modal frequency degeneracy in thermally loaded optical resonators,” Appl. Opt.47, 2840–2851 (2008). [CrossRef] [PubMed]
  23. G. Mueller, “Beam jitter coupling in Advanced LIGO,” Opt. Express13, 7118–7132 (2005). [CrossRef] [PubMed]
  24. V. Delaubert, N. Treps, M. Lassen, C. C. Harb, C. Fabre, P. K. Lam, and H.-A. Bachor, “TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme,” Phys. Rev. A74, 053823 (2006). [CrossRef]
  25. P. Kwee, B. Willke, and K. Danzmann, “Laser power noise detection at the quantum-noise limit of 32 A photocurrent,” Opt. Lett.36, 3563–3565 (2011). [CrossRef] [PubMed]
  26. A. Araya, N. Mio, K. Tsubono, K. Suehiro, S. Telada, M. Ohashi, and M. Fujimoto, “Optical mode cleaner with suspended mirrors,” Appl. Opt.36, 1446–1453 (1997). [CrossRef] [PubMed]
  27. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett.34, 2912–2914 (2009). [CrossRef] [PubMed]
  28. B. Lantz, P. Fritschel, H. Rong, E. Daw, and G. González, “Quantum-limited optical phase detection at the 10−10 rad level,” J. Opt. Soc. Am. A19, 91–100 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited