OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10635–10645

Deep-blue supercontinnum sources with optimum taper profiles – verification of GAM

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10635-10645 (2012)
http://dx.doi.org/10.1364/OE.20.010635


View Full Text Article

Enhanced HTML    Acrobat PDF (1741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use an asymmetric 2 m draw-tower photonic crystal fiber taper to demonstrate that the taper profile needs careful optimisation if you want to develop a supercontinuum light source with as much power as possible in the blue edge of the spectrum. In particular we show, that for a given taper length, the downtapering should be as long as possible. We argue how this may be explained by the concept of group-acceleration mismatch (GAM) and we confirm the results using conventional symmetrical short tapers made on a taper station, which have varying downtapering lengths.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 13, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: April 18, 2012
Published: April 24, 2012

Citation
S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, "Deep-blue supercontinnum sources with optimum taper profiles – verification of GAM," Opt. Express 20, 10635-10645 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3, 85–90 (2009). [CrossRef]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996). [CrossRef] [PubMed]
  3. P. Russel, “Photonic crystal fiber,” Science299, 358–362 (2003). [CrossRef]
  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett.88, 173901 (2002). [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22, 961–963 (1997). [CrossRef] [PubMed]
  6. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003). [CrossRef] [PubMed]
  7. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901 (2001). [CrossRef] [PubMed]
  8. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003). [CrossRef] [PubMed]
  9. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A76, 053803 (2007). [CrossRef]
  10. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1, 653–657 (2007). [CrossRef]
  11. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B6, 1149–1158 (1989). [CrossRef]
  12. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express14, 9391–9407 (2006). [CrossRef] [PubMed]
  13. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature450, 1054–1057 (2007). [CrossRef] [PubMed]
  14. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express16, 3644–3651 (2008). [CrossRef] [PubMed]
  15. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett.101, 233902 (2008). [CrossRef] [PubMed]
  16. O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear klein-gordon lattices,” Phys. Rev. E53, 4143–4152 (1996). [CrossRef]
  17. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “Could rogue waves be used as efficient weapons against enemy ships?” Eur. Phys. J. Special Topics185, 259–266 (2010). [CrossRef]
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Elect.23, 1938–1946 (1987). [CrossRef]
  19. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniformphotonic crystal fiber using a microchip laser,” Opt. Express16, 2670–2675 (2008). [CrossRef] [PubMed]
  20. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express14, 9854–9863 (2006). [CrossRef] [PubMed]
  21. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett.36, 816–818 (2011). [CrossRef] [PubMed]
  22. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett.34, 115–117 (2009). [CrossRef] [PubMed]
  23. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express13, 9556–9569 (2005). [CrossRef] [PubMed]
  24. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express18, 20151–20163 (2010). [CrossRef] [PubMed]
  25. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12, 113001 (2010). [CrossRef]
  26. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  27. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29, 635–645 (2012). [CrossRef]
  28. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25, 1415–1417 (2000). [CrossRef]
  29. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12, 2864–2869 (2004). [CrossRef] [PubMed]
  30. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett.30, 1566–1568 (2005). [CrossRef] [PubMed]
  31. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express13, 7535–7540 (2005). [CrossRef] [PubMed]
  32. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14, 5715–5722 (2006). [CrossRef] [PubMed]
  33. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express15, 13203–13211 (2007). [CrossRef] [PubMed]
  34. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett.33, 2407–2409 (2008). [CrossRef] [PubMed]
  35. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express18, 16640–16645 (2010). [CrossRef] [PubMed]
  36. J. Cascante-Vindas, A. Díez, J. L. Cruz, and M. Andrés, “White light supercontinuum generation in a y-shaped microstructured tapered fiber pumped at 1064 nm,” Opt. Express18, 14535–14540 (2010). [CrossRef] [PubMed]
  37. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express20, 1141–1150 (2012). [CrossRef] [PubMed]
  38. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep uv,” Opt. Lett.37, 770–772 (2012). [CrossRef] [PubMed]
  39. N. Vukovic, N. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett.20, 1264–1266 (2008). [CrossRef]
  40. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett.33, 621–623 (2008). [CrossRef] [PubMed]
  41. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett.29, 1739–1741 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited