OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10750–10760

Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration

M. Andreana, A. Labruyère, A. Tonello, S. Wabnitz, P. Leproux, V. Couderc, C. Duterte, A. Cserteg, A. Bertrand, Y. Hernandez, D. Giannone, S. Hilaire, and G. Huss  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10750-10760 (2012)
http://dx.doi.org/10.1364/OE.20.010750


View Full Text Article

Enhanced HTML    Acrobat PDF (1853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering.

© 2012 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 12, 2011
Revised Manuscript: February 9, 2012
Manuscript Accepted: February 27, 2012
Published: April 25, 2012

Citation
M. Andreana, A. Labruyère, A. Tonello, S. Wabnitz, P. Leproux, V. Couderc, C. Duterte, A. Cserteg, A. Bertrand, Y. Hernandez, D. Giannone, S. Hilaire, and G. Huss, "Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration," Opt. Express 20, 10750-10760 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000). [CrossRef]
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett.26, 1356–1358 (2001). [CrossRef]
  4. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express14, 7914–7923 (2006). [CrossRef] [PubMed]
  5. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett.45, 29–30 (2009). [CrossRef]
  6. E. E. Serebryannikov and A. M. Zheltikov, “Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: when picoseconds do it better,” Opt. Commun.274, 433–440 (2007). [CrossRef]
  7. A. Mussot, M. Beaugeois, M. Bouazaoui, and Th. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express.15, 11553–11563 (2007). [CrossRef] [PubMed]
  8. M. Erkintalo, G. Genty, and J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Special Topics185, 135–144 (2010). [CrossRef]
  9. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “‘Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B6, 1149–1158 (1989). [CrossRef]
  10. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express14, 9391–9407 (2006). [CrossRef] [PubMed]
  11. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express14, 9844–9853 (2006). [CrossRef] [PubMed]
  12. Q. M. Nguyen and A. Peleg, “Resolving the Raman-induced cross frequency shift in fast optical soliton collisions,” J. Opt. Soc. Am. B27, 1985–1990 (2010). [CrossRef]
  13. S. Kumar, “Influence of Raman effects in wavelength-division multiplexed soliton systems,” Opt. Lett.23, 1450–1452 (1998). [CrossRef]
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11, 662–664 (1986). [CrossRef] [PubMed]
  15. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett.19, 2065–2067 (1994). [CrossRef] [PubMed]
  16. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B26, 2064–2071 (2009). [CrossRef]
  17. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions,” Sov. Phys. JETP62, 894–992 (1985).
  18. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of nonlinear Schrödinger equation,” Teor. Mat. Fiz.69, 189–194 (1986).
  19. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12, 113001 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited