OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10816–10826

Simulating light scattering from supported plasmonic nanowires

Vladimir D. Miljković, Timur Shegai, Peter Johansson, and Mikael Käll  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10816-10826 (2012)
http://dx.doi.org/10.1364/OE.20.010816


View Full Text Article

Enhanced HTML    Acrobat PDF (2032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for calculating the differential scattering cross sections from nanostructures close to an interface separating two semi-infinitive dielectric media. The method combines a fast finite element software (Comsol multiphysics), used for calculations of the fields around and inside the structure, and the Green's functions method, which is used to find the far field distribution from the calculated total fields inside the nanostructure. We apply the method to calculations of scattering spectra from silver nanowires supported by an air-glass interface, a system that is of high current interest in relation to various nanophotonics applications. The results are analyzed in relation to analytical models and compared to experimentally measured spectra, to which we find a good agreement.

© 2012 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(140.4780) Lasers and laser optics : Optical resonators
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 17, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 15, 2012
Published: April 25, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Vladimir D. Miljković, Timur Shegai, Peter Johansson, and Mikael Käll, "Simulating light scattering from supported plasmonic nanowires," Opt. Express 20, 10816-10826 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Zeitschrift Fur Naturforschung Part A-Astrophysik Physik Und Physikalische Chemie A23, 2135–2136 (1968).
  2. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985). [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  7. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett.2(2), 165–168 (2002). [CrossRef]
  8. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005). [CrossRef] [PubMed]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  10. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000). [CrossRef]
  11. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express17(21), 18621–18629 (2009). [CrossRef] [PubMed]
  12. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006). [CrossRef]
  13. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999). [CrossRef]
  14. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non diffraction-limited light transport by gold nanowires,” Europhys. Lett.60(5), 663–669 (2002). [CrossRef]
  15. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007). [CrossRef] [PubMed]
  16. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  17. R. X. Yan, P. Pausauskie, J. X. Huang, and P. D. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A.106(50), 21045–21050 (2009). [CrossRef] [PubMed]
  18. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett.9(11), 3756–3761 (2009). [CrossRef] [PubMed]
  19. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  20. F. Hao and P. Nordlander, “Plasmonic coupling between a metallic nanosphere and a thin metallic wire,” Appl. Phys. Lett.89(10), 103101 (2006). [CrossRef]
  21. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7(8), 2346–2350 (2007). [CrossRef] [PubMed]
  22. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, “Branched silver nanowires as controllable plasmon routers,” Nano Lett.10(5), 1950–1954 (2010). [CrossRef] [PubMed]
  23. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11(2), 471–475 (2011). [CrossRef] [PubMed]
  24. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007). [CrossRef] [PubMed]
  25. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006). [CrossRef] [PubMed]
  26. T. Shegai, Y. Z. Huang, H. X. Xu, and M. Käll, “Coloring fluorescence emission with silver nanowires,” Appl. Phys. Lett.96(10), 103114 (2010). [CrossRef]
  27. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys.5(7), 475–479 (2009). [CrossRef]
  28. H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009). [CrossRef] [PubMed]
  29. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009). [CrossRef] [PubMed]
  30. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett.10(9), 3596–3603 (2010). [CrossRef] [PubMed]
  31. E. R. Encina and E. A. Coronado, “Plasmonic nanoantennas: Angular scattering properties of multipole resonances in noble metal nanorods,” J. Phys. Chem. C112(26), 9586–9594 (2008). [CrossRef]
  32. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011). [CrossRef] [PubMed]
  33. Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009). [CrossRef] [PubMed]
  34. Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010). [CrossRef] [PubMed]
  35. L. M. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010). [CrossRef] [PubMed]
  36. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  37. P. Johansson, “Electromagnetic Green’s function for layered systems: Applications to nanohole interactions in thin metal films,” Phys. Rev. B83(19), 195408 (2011). [CrossRef]
  38. J. A. Stratton, Electromagnetic Theory (McGraw-Hill: New York, 1941).
  39. P. Hanarp, M. Kall, and D. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003). [CrossRef]
  40. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. Cornelius, M. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006). [CrossRef]
  41. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  42. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett.11(3), 1020–1024 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited