OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10879–10887

Interacting plasmon and phonon polaritons in aligned nano- and microwires

Viktor Myroshnychenko, Andrzej Stefanski, Alejandro Manjavacas, Maria Kafesaki, Rosa I. Merino, Victor M. Orera, Dorota Anna Pawlak, and F. Javier García de Abajo  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10879-10887 (2012)
http://dx.doi.org/10.1364/OE.20.010879


View Full Text Article

Enhanced HTML    Acrobat PDF (2064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The availability of macroscopic, nearly periodic structures known as eutectics opens a new path for controlling light at wavelength scales determined by the geometrical parameters of these materials and the intrinsic properties of their component phases. Here, we analyze the optical waveguiding properties of eutectic mixtures of alkali halides, formed by close-packed arrangements of aligned cylindrical inclusions. The wavelengths of phonon polaritons in these constituents are conveniently situated in the infrared and are slightly larger than the diameter and separation of the inclusions, typically consisting on single-crystal wires down to submicrometer diameter. We first discuss the gap mode and the guiding properties of metallic cylindrical waveguides in the visible and near-infrared, and in particular we investigate the transition between cylinder touching and non-touching regimes. Then, we demonstrate that these properties can be extended to the mid infrared by means of phonon polaritons. Finally, we analyze the guiding properties of an actual eutectic. For typical eutectic dimensions, we conclude that crosstalk between neighboring cylindrical wires is small, thus providing a promising platform for signal propagation and image analysis in the mid infrared.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 3, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 4, 2012
Published: April 26, 2012

Citation
Viktor Myroshnychenko, Andrzej Stefanski, Alejandro Manjavacas, Maria Kafesaki, Rosa I. Merino, Victor M. Orera, Dorota Anna Pawlak, and F. Javier García de Abajo, "Interacting plasmon and phonon polaritons in aligned nano- and microwires," Opt. Express 20, 10879-10887 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001). [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics2, 496–500 (2008). [CrossRef]
  6. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano Lett.9, 1285–1289 (2009). [CrossRef]
  7. A. Manjavacas and F. J. García de Abajo, “Coupling of gap plasmons in multi-wire waveguides,” Opt. Express17, 19401–19413 (2009). [CrossRef] [PubMed]
  8. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs,” Opt. Express15, 4474–4484 (2007). [CrossRef] [PubMed]
  9. A. J. Huber, B. Deutsch, L. Novotny, and R. Hillenbrand, “Focusing of surface phonon polaritons,” Appl. Phys. Lett.92, 203104 (2008). [CrossRef]
  10. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).
  11. J. S. Kirkaldy, “Predicting the patterns in lamellar growth,” Phys. Rev. B30, 6889–6895 (1984). [CrossRef]
  12. J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mat. Sci.51, 711–809 (2006). [CrossRef]
  13. D. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, and T. Fukuda, “Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic,” J. Appl. Phys.91, 9731–9736 (2002). [CrossRef]
  14. D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rozniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rodlike, micrometer-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater.18, 2450–2457 (2006). [CrossRef]
  15. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mat.20, 1116–1124 (2010). [CrossRef]
  16. A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mater. Res.15, 1314–1319 (2000). [CrossRef]
  17. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998). [CrossRef]
  18. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002). [CrossRef]
  19. F. J. García de Abajo, A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, “Cherenkov effect as a probe of photonic nanostructures,” Phys. Rev. Lett.91, 143902 (2003). [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).
  21. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  22. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8, 655–663 (2001). [CrossRef] [PubMed]
  23. V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater.27, 1726–1729 (2005). [CrossRef]
  24. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B73, 113110 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited