OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10888–10895

Physics of near-wavelength high contrast gratings

Vadim Karagodsky and Connie J. Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10888-10895 (2012)
http://dx.doi.org/10.1364/OE.20.010888


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple theory explaining the extraordinary features of high-contrast optical gratings in the near-wavelength regime, particularly the very broadband high reflectivity (>99%) and the ultra-high quality factor resonances (Q>107). We present, for the first time, an intuitive explanation for both features using a simple phase selection rule, and reveal the anti-crossing and crossing effects between the grating modes. Our analytical results agree well with simulations and the experimental data obtained from vertical cavity surface emitting lasers incorporating a high contrast grating as top reflector.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(260.2110) Physical optics : Electromagnetic optics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 4, 2012
Revised Manuscript: March 12, 2012
Manuscript Accepted: April 15, 2012
Published: April 26, 2012

Citation
Vadim Karagodsky and Connie J. Chang-Hasnain, "Physics of near-wavelength high contrast gratings," Opt. Express 20, 10888-10895 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).
  2. B. C. Kress and P. Meyrueis, Applied Digital Optics: from Micro-optics to Nanophotonics (Wiley, 2009)
  3. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett.23(7), 552–554 (1998). [CrossRef] [PubMed]
  4. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998). [CrossRef]
  5. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, and E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only,” Appl. Opt.41(18), 3558–3566 (2002). [CrossRef] [PubMed]
  6. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997). [CrossRef]
  7. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61(9), 1022–1024 (1992). [CrossRef]
  8. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  9. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004). [CrossRef]
  10. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high contrast grating,” IEEE Photon. Technol. Lett.20(6), 434–436 (2008). [CrossRef]
  11. C. J. Chang-Hasnain, Y. Zhou, M. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009). [CrossRef]
  12. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics2(3), 180–184 (2008). [CrossRef]
  14. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008). [CrossRef] [PubMed]
  15. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E. B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104(16), 163903 (2010). [CrossRef] [PubMed]
  16. T. Stöferle, N. Moll, T. Wahlbrink, J. Bolten, T. Mollenhauer, U. Scherf, and R. F. Mahrt, “Ultracompact silicon/polymer laser with an absorption-insensitive nanophotonic resonator,” Nano Lett.10(9), 3675–3678 (2010). [CrossRef] [PubMed]
  17. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55- μ m emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012). [CrossRef]
  18. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express17(3), 1508–1517 (2009). [CrossRef] [PubMed]
  19. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express18(2), 694–699 (2010). [CrossRef] [PubMed]
  20. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010). [CrossRef] [PubMed]
  21. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010). [CrossRef]
  22. B. Pesala, V. Karagodsky and C. Chang-Hasnain, “"Ultra-compact optical coupler and splitter using high-contrast grating hollow-core waveguide," in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IWH1.
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled wave analysis of planar grating diffraction,” J. Opt. Soc. Am.71(7), 811 (1981). [CrossRef]
  24. S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence,” J. Opt. Soc. Am. A6(12), 1869 (1989). [CrossRef]
  25. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt.40(4), 553–573 (1993). [CrossRef]
  26. P. Lalanne, J. P. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,” J. Lightwave Technol.24(6), 2442–2449 (2006). [CrossRef]
  27. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010). [CrossRef] [PubMed]
  28. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett.36(9), 1704–1706 (2011). [CrossRef] [PubMed]
  29. T. Tamir, G. Griffel, and H. L. Bertoni, eds., Guided-Wave Optoelectronics, 2nd ed. (Springer-Verlag, 1990).
  30. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  31. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  32. W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloy,s,” Phys. Rev. Lett.82(6), 1221–1224 (1999). [CrossRef]
  33. D. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  34. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Optical modulation using anti-crossing between paired amplitude and phase resonators,” Opt. Express15(25), 17264–17272 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited