OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10921–10932

Novel compact dual-band LOROP camera with telecentricity

Kwang-Woo Park, Jeong-Yeol Han, Jongin Bae, Sug-Whan Kim, and Chang-Woo Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10921-10932 (2012)
http://dx.doi.org/10.1364/OE.20.010921


View Full Text Article

Enhanced HTML    Acrobat PDF (2608 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new dual band compact oblique photography camera (LC11) that is the first to benefit from the incorporation of telecentricity. LC11 has a common front end F/6.6 telescope with 280 mm in aperture that forms its electro-optical (EO, F/7.5) and MWIR (F/5.6) modules. The design allows a substantial reduction in volume and weight due to i) the EO/MWIR compensator and relay lens groups arranged very close to the primary mirror (M1), and ii) light-weighted M1 and SiC main frame (MF) structure. Telecentricity of up to 2 and 0.2 degrees for the EO and MWIR modules, respectively, is achieved by balancing optical power among all lenses. The initial field test shows 0.32 ± 0.05 (EO)/0.20 ± 0.06 (MWIR) in measured MTF at 28 (EO) and 13 (MWIR) cycles/mm in target frequency, and an improved operability with a greater reduction in operational volume and mass than other existing LOROP cameras.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.3080) Imaging systems : Infrared imaging
(110.6770) Imaging systems : Telescopes
(110.6820) Imaging systems : Thermal imaging
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Imaging Systems

History
Original Manuscript: February 21, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 18, 2012
Published: April 26, 2012

Citation
Kwang-Woo Park, Jeong-Yeol Han, Jongin Bae, Sug-Whan Kim, and Chang-Woo Kim, "Novel compact dual-band LOROP camera with telecentricity," Opt. Express 20, 10921-10932 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Petrushevsky, “High-resolution long-range oblique IR imaging from an airborne platform,” Proc. SPIE6395, 1–9 (2006).
  2. A. G. Lareau, “Electro-optical imaging array with motion compensation,” U.S. patent 5,155,597 (Oct. 13, 1992).
  3. A. G. Lareau, “Electro-optical imaging array with motion compensation,” Proc. SPIE2023, 65–79 (1993). [CrossRef]
  4. A. G. Lareau, “Electro-optical imaging detector array for a moving vehicle which includes two axis image motion compensation and transfers pixels in row directions and column directions,” U.S. patent 5,798,786 (Aug. 25, 1998).
  5. R. G. Sementelli, “EO/IR dual-band reconnaissance system DB-110,” Proc. SPIE2555, 222–231 (1995). [CrossRef]
  6. R. N. Lane and J. K. Delaney, “DB-110 performance update,” Proc. SPIE3431, 108–118 (1998). [CrossRef]
  7. K. Riehl., “RAPTOR (DB-110) reconnaissance system: in operation,” Proc. SPIE4824, 1–12 (2002). [CrossRef]
  8. D. Lange, W. Abrams, M. A. Iyengar, R. Lane, and A. Defrietas, “Goodrich DB-110 system: multiband operation today and tomorrow,” Proc. SPIE5109, 22–36 (2003). [CrossRef]
  9. Goodrich Co, Ltd., “Goodrich DB-110 aerial reconnaissance pod provides real-time critical intelligence for defense missions,” http://www.goodrich.com/gr-ext-templating/images/Goodrich%20Content/Enterprise%20Content/Market%20Capabilities/Defense%20and%20Space/51440_DB-110_Reconnaissance.pdf .
  10. A. Bodkin, A. Sheinis, and J. McCann, “Compact multi-band (VIS/IR) zoom imager for high resolution long range surveillance,” Proc. SPIE5783, 816–826 (2005). [CrossRef]
  11. J. M. Topaz, D. Freiman, and I. Porat, “Dual-wavelength camera for long-range reconnaissance platforms,” Proc. SPIE4820, 728–735 (2003). [CrossRef]
  12. D. M. Stuart, “Sensor design for unmanned aerial vehicles,” Proc. IEEE3, 285–295 (1997).
  13. Opto Engineering, “Telecentric lenses tutorial,” http://www.opto-engineering.com/telecentric-lenses-tutorial.html .
  14. M. Watanabe and S. K. Nayar, “Telecentric optics for constant magnification imaging,” Technical report, Department of Computer Science, Columbia University CUCS-026–95, Sept. 1995.
  15. R. A. Petrozzo and S. W. Singer, “Telecentric lenses simplify non-contact metrology,” Test & Measurement World Magazine (Oct. 4–9, 2001).
  16. P. E. Murphy, T. G. Brown, and D. T. Moore, “Measurement and calibration of interferometric imaging aberrations,” Appl. Opt.39(34), 6421–6429 (2000). [CrossRef] [PubMed]
  17. S. Djidel, J. K. Gansel, H. I. Campbell, and A. H. Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Opt. Express14(18), 8269–8277 (2006). [CrossRef] [PubMed]
  18. Z. Hu and A. M. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express13(17), 6407–6415 (2005). [CrossRef] [PubMed]
  19. T. Arai and K. Yano, “Telecentric zoom lens,” U.S. patent 7,177,090 (Feb. 13, 2007).
  20. N. K. Kawasaki and M. A. Oyama, “Telecentric zoom lens,” U.S. Patent 5,764,419 (June 9, 1998).
  21. F. Watanabe, “Telecentric projection lens system,” U.S. Patent 5,905,596 (May 18, 1999).
  22. M. Tateoka, “Telecentric projection lenses,” U.S. Patent 4,441,792 (Apr. 10, 1984).
  23. Y.-S. Lan and C.-M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt.48(18), 3391–3395 (2009). [CrossRef] [PubMed]
  24. J.-Y. Han, S. Marchuk, H. Kim, C. Kim, and K. Park, “Imaging EO/IR optical system for long range oblique photography,” Proc. SPIE8020, 802009, 802009-6 (2011). [CrossRef]
  25. K.-W. Park, Y.-S. Shin, C.-W. Kim, and S.-W. Kim, “Airborne frame camera MTF characteristics due to the B.S.M. (Back Scan Mechanism),” in Proceedings of ADD 40th Anniversary Meeting, Y.-S. Kim, ed. (Daejeon Convention Center, Daejeon, Korea, 2010), pp. 122–125.
  26. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt.36(32), 8322–8328 (1997). [CrossRef] [PubMed]
  27. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation for infrared imagery,” Appl. Opt.39(26), 4826–4828 (2000). [CrossRef] [PubMed]
  28. J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Imaging Systems Modeling and Performance Prediction (Artech House, 2001), Chap. 10.
  29. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.66(3), 207–211 (1976). [CrossRef]
  30. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997), Chap. 4.
  31. W. B. King, “Correlation between the relative modulation function and the magnitude of the variance of the wave-aberration difference function,” J. Opt. Soc. Am.59(6), 692–697 (1969). [CrossRef]
  32. J. W. Coltman, “The specification of imaging properties by response to a sine wave input,” J. Opt. Soc. Am.44(6), 468–469 (1954). [CrossRef]
  33. Aerospace Research Information Center, “Recon/optical CA-295 dual-band digital framing camera,” www.aric.or.kr/trend/accessory/content.asp?classify=10&search=&idx=605&page=1 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited