OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10963–10970

Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters

Hai-Dong Deng, Guang-Can Li, Qiao-Feng Dai, Min Ouyang, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10963-10970 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the simultaneous trapping and melting of a large number of gold (Au) nanorods by using a single focused laser beam at 800 nm which is in resonance with the longitudinal surface plasmon resonance of Au nanorods. The trapping and melting processes were monitored by the two-photon luminescence of Au nanorods. A multi-ring-shaped pattern was observed in the steady state of the trapping process. In addition, optical trapping of clusters of Au nanorods in the orbits circling the focus was observed. The morphology of the structure after trapping and melting of Au nanorods was characterized by scanning electron microscope. It was revealed that Au nanorods were selectively melted in the trapping region. While Au nanorods distributed in the dark rings were completely melted, those located in the bright rings remain unmelted. The multi-ring-shaped pattern formed by the interference between the incident light and the scattered light plays an important role in the trapping and melting of Au nanorods.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(350.5340) Other areas of optics : Photothermal effects
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: April 4, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 24, 2012
Published: April 26, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Hai-Dong Deng, Guang-Can Li, Qiao-Feng Dai, Min Ouyang, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak, "Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters," Opt. Express 20, 10963-10970 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007). [CrossRef] [PubMed]
  3. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008). [CrossRef] [PubMed]
  4. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  5. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007). [CrossRef]
  6. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  7. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007). [CrossRef] [PubMed]
  8. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  9. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005). [CrossRef] [PubMed]
  10. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem.79(2), 572–579 (2007). [CrossRef] [PubMed]
  11. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008). [CrossRef] [PubMed]
  12. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  13. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987). [CrossRef] [PubMed]
  14. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  15. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008). [CrossRef] [PubMed]
  16. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett.31(13), 2075–2077 (2006). [CrossRef] [PubMed]
  17. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010). [CrossRef] [PubMed]
  18. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod,” Chem. Phys. Lett.315(1-2), 12–18 (1999). [CrossRef]
  19. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000). [CrossRef]
  20. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000). [CrossRef]
  21. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999). [CrossRef]
  22. W. Schaertl and C. Roos, “Convection and thermodiffusion of colloidal gold tracers by laser light scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60(22 Pt B), 2020–2028 (1999). [CrossRef] [PubMed]
  23. R. Spill, W. Köhler, G. Lindenblatt, and W. Schaertl, “Thermal diffusion and Soret feedback of gold-doped polyorganosiloxane nanospheres in toluene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(66 Pt B), 8361–8368 (2000). [CrossRef] [PubMed]
  24. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989). [CrossRef] [PubMed]
  25. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science249(4970), 749–754 (1990). [CrossRef] [PubMed]
  26. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett.89(28), 283901 (2002). [CrossRef] [PubMed]
  27. A. Haldar, S. B. Pal, B. Roy, A. Banerjee, and S. Dutta Gupta, “Self assembly of microparticles in stable ring structures in an optical trap,” Phys. Rev. A (to be published).
  28. J. Liu, Q. F. Dai, Z. M. Meng, X. G. Huang, L. J. Wu, Q. Guo, W. Hu, S. Lan, A. V. Gopal, and V. A. Trofimov, “All-optical switching using controlled formation of large volume three-dimensional optical matter,” Appl. Phys. Lett.92(23), 233108 (2008). [CrossRef]
  29. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011). [CrossRef] [PubMed]
  30. G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process.102(3), 551–557 (2011). [CrossRef]
  31. Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express18(26), 27226–27237 (2010). [CrossRef] [PubMed]
  32. G. Obara, Y. Tanaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Direct observation of surface plasmon far field for regular surface ripple formation by femtosecond laser pulse irradiation of gold nanostructures on silicon substrates,” Appl. Phys. Lett.99(6), 061106 (2011). [CrossRef]
  33. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited