OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10996–11004

Azimuthal decomposition with digital holograms

Igor A. Litvin, Angela Dudley, Filippus S. Roux, and Andrew Forbes  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10996-11004 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple approach, using digital holograms, to perform a complete azimuthal decomposition of an optical field. Importantly, we use a set of basis functions that are not scale dependent so that unlike other methods, no knowledge of the initial field is required for the decomposition. We illustrate the power of the method by decomposing two examples: superpositions of Bessel beams and Hermite-Gaussian beams (off-axis vortex). From the measured decomposition we show reconstruction of the amplitude, phase and orbital angular momentum density of the field with a high degree of accuracy.

© 2012 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:

Original Manuscript: March 5, 2012
Revised Manuscript: April 23, 2012
Manuscript Accepted: April 24, 2012
Published: April 26, 2012

Igor A. Litvin, Angela Dudley, Filippus S. Roux, and Andrew Forbes, "Azimuthal decomposition with digital holograms," Opt. Express 20, 10996-11004 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Publishing Company, 1968).
  2. E. Tervonen, J. Turunen, and A. Friberg, “Transverse laser mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B49(5), 409–414 (1989). [CrossRef]
  3. A. Cutolo, T. Isernia, I. Izzo, R. Pierri, and L. Zeni, “Transverse mode analysis of a laser beam by near- and far-field intensity measurements,” Appl. Opt.34(34), 7974–7978 (1995). [CrossRef] [PubMed]
  4. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite-Gaussian modes,” Appl. Opt.38(25), 5272–5281 (1999). [CrossRef] [PubMed]
  5. X. Xue, H. Wei, and A. G. Kirk, “Intensity-based modal decomposition of optical beams in terms of Hermite-Gaussian functions,” J. Opt. Soc. Am. A17(6), 1086–1091 (2000). [CrossRef] [PubMed]
  6. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett.35(20), 3429–3431 (2010). [CrossRef] [PubMed]
  7. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express17(11), 9347–9356 (2009). [CrossRef] [PubMed]
  8. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16(10), 7233–7243 (2008). [CrossRef] [PubMed]
  9. D. B. S. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, and V. Philippov, “Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers,” J. Opt. Soc. Am. A21(7), 1241–1250 (2004). [CrossRef] [PubMed]
  10. M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express20(4), 4074–4084 (2012). [CrossRef] [PubMed]
  11. O. A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, and M. Duparré, “Real-time determination of laser beam quality by modal decomposition,” Opt. Express19(7), 6741–6748 (2011). [CrossRef] [PubMed]
  12. I. A. Litvin, A. Dudley, and A. Forbes, “Poynting vector and orbital angular momentum density of superpositions of Bessel beams,” Opt. Express19(18), 16760–16771 (2011). [CrossRef] [PubMed]
  13. A. Dudley, I. A. Litvin, and A. Forbes, “Quantitative measurement of the orbital angular momentum density of light,” Appl. Opt.51(7), 823–833 (2012). [CrossRef] [PubMed]
  14. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-order Bessel beams,” Opt. Express17(26), 23389–23395 (2009). [CrossRef] [PubMed]
  15. R. Rop, A. Dudley, C. Lopez-Mariscal, and A. Forbes, “Measuring the rotation rates of superpositions of higher-order Bessel beams,” J. Mod. Opt.59(3), 259–267 (2012). [CrossRef]
  16. R. Rop, I. A. Litvin, and A. Forbes, “Generation and propagation dynamics of obstructed and unobstructed rotating orbital angular momentum-carrying Helicon beams,” J. Opt.14(3), 035702 (2012). [CrossRef]
  17. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behaviour and applications,” Adv. Opt. Photon.3(2), 161–204 (2011). [CrossRef]
  18. G. Li and X. Liu, “Focus Issue: Space multiplexed optical transmission,” Opt. Express19(17), 16574–16575 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1255 KB)     
» Media 2: MOV (250 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited