OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11037–11045

Single silicon wire waveguide based delay line interferometer for DPSK demodulation

Rai Kou, Hidetaka Nishi, Tai Tsuchizawa, Hiroshi Fukuda, Hiroyuki Shinojima, and Koji Yamada  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11037-11045 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a high-quality phase shift keying demodulator based on a silicon photonic wire waveguide. Since the birefringence of the waveguide generates extremely huge differential group delay, an ultra-compact and high-extinction-ratio delay line interferometer is devised in TE and TM modes. We firstly calculated and simulated the requirements for propagation length and waveguide’s dimensions. Then, we measured the interference spectrum, eye pattern, bit error rate, and temperature dependence to ascertain its feasibility for DPSK demodulation. For a 2.8 cm-long wire waveguide, a free spectral range of 9.6 GHz and an error-free DPSK demodulation around 10 Gb/s are obtained.

© 2012 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3120) Integrated optics : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:
Integrated Optics

Original Manuscript: February 29, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 23, 2012
Published: April 27, 2012

Rai Kou, Hidetaka Nishi, Tai Tsuchizawa, Hiroshi Fukuda, Hiroyuki Shinojima, and Koji Yamada, "Single silicon wire waveguide based delay line interferometer for DPSK demodulation," Opt. Express 20, 11037-11045 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005). [CrossRef]
  2. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006). [CrossRef]
  3. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010). [CrossRef]
  4. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol.27(16), 3705–3714 (2009). [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMAF,” J. Lightwave Technol.26(1), 6–15 (2008). [CrossRef]
  6. J. J. Yu, M. F. Huang, D. Y. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  7. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008). [CrossRef] [PubMed]
  8. X. Liu, A. H. Gnauck, X. Wei, J. Hsieh, C. Y. Ai, and V. Chien, “Athermal optical demodulator for OC-768 DPSK and RZ-DPSK signals,” IEEE Photon. Technol. Lett.17(12), 2610–2612 (2005). [CrossRef]
  9. Y. K. Lize, M. Faucher, E. Jarry, P. Ouellette, E. Villeneuve, A. Wetter, and F. Seguin, “Phase-tunable low-loss, S-, C-, and L-band DPSK and DQPSK demodulator,” IEEE Photon. Technol. Lett.19(23), 1886–1888 (2007). [CrossRef]
  10. J. Gamet and G. Pandraud, “C- and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17(6), 1217–1219 (2005). [CrossRef]
  11. Y. Nasu, K. Hattori, T. Saida, Y. Hashizume, and Y. Sakamaki, “Silica-based adaptive-delay DPSK demodulator with a cascaded Mach-Zehnder interferometer configuration,” in Proc. European Conference and Exhibition on Optical Communication (ECOC 2010), 3 pp. (2011).
  12. Y. Sakamaki, K. Hattori, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarisation-multiplexed DQPSK demodulator using silica-based planar lightwave circuit technology,” Electron. Lett.46(16), 1152–1153 (2010). [CrossRef]
  13. K. Voigt, L. Zimmermann, G. Winzer, T. Mitze, J. Bruns, K. Petermann, B. Huttl, and C. Schubert, “Performance of 40-Gb/s DPSK demodulator in SOI-technology,” IEEE Photon. Technol. Lett.20(8), 614–616 (2008). [CrossRef]
  14. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007). [CrossRef] [PubMed]
  15. X. Lin, L. Chao, W. Chiyan, and H. Tsang, “Optical differential-phase-shift-keying demodulation using a silicon microring resonator,” IEEE Photon. Technol. Lett.21(5), 295–297 (2009). [CrossRef]
  16. R. Kou, S. Park, T. Tsuchizawa, H. Fukuda, H. Nishi, H. Shinojima, and K. Yamada, “Phase demodulation of DPSK signals using dual-bus coupled silicon micro-ring resonator,” IEICE Trans. Electron. E95-C, 224–228 (2012).
  17. Y. Ding, J. Xu, C. Peucheret, M. Pu, L. Liu, J. Seoane, H. Ou, X. Zhang, and D. Huang, “Multi-channel 40 Gbit/s NRZ-DPSK demodulation using a single silicon microring resonator,” J. Lightwave Technol.29(5), 677–684 (2011). [CrossRef]
  18. R. Kou, K. Yamada, H. Nishi, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “DPSK demodulation with a single silicon photonic nanowire waveguide,” in Proc. IEEE 8th International Conference on Group IV Photonics (GFP 2011), 323–325 (2011).
  19. A. Sv Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” J. Opt. A, Pure Appl. Opt.2, 211–233 (1993).
  20. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  21. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005). [CrossRef]
  22. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron.17(3), 516–525 (2011). [CrossRef]
  23. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999). [CrossRef]
  24. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  25. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express16(4), 2628–2635 (2008). [CrossRef] [PubMed]
  26. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  27. Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightwave Technol.27(21), 4814–4820 (2009). [CrossRef]
  28. Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric half-wave plate configuration of PLC Mach-Zehnder interferometer for polarization insensitive DQPSK demodulator,” J. Lightwave Technol.27(23), 5348–5355 (2009). [CrossRef]
  29. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express20(8), 9312–9321 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited