OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11046–11056

Reconfigurable photonic crystal waveguides created by selective liquid infiltration

A. Casas Bedoya, P. Domachuk, C. Grillet, C. Monat, E.C. Mägi, E. Li, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11046-11056 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate reconfigurable photonic crystal waveguides created directly by infiltrating high refractive index (n≈2.01) liquids into selected air holes of a two-dimensional hexagonal periodic lattice in silicon. The resulting effective index contrast is large enough that a single row of infiltrated holes enables light propagation at near-infrared wavelengths. We include a detailed comparison between modeling and experimental results of single line defect waveguides and show how our infiltration procedure is reversible and repeatable. We achieve infiltration accuracy down to the single air hole level and demonstrate control on the volume of liquid infused into the holes by simply changing the infiltration velocity. This method is promising for achieving a wide range of targeted optical functionalities on a “blank” photonic crystal membrane that can be reconfigured on demand.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 10, 2012
Revised Manuscript: April 14, 2012
Manuscript Accepted: April 19, 2012
Published: April 27, 2012

A. Casas Bedoya, P. Domachuk, C. Grillet, C. Monat, E.C. Mägi, E. Li, and B. J. Eggleton, "Reconfigurable photonic crystal waveguides created by selective liquid infiltration," Opt. Express 20, 11046-11056 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, R. M. DeLaRue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature383(6602), 699–702 (1996). [CrossRef]
  2. S. Y. Lin, E. Chow, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature407(6807), 983–986 (2000). [CrossRef] [PubMed]
  3. D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y. H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photonics Nanostruct. Fundam. Appl.6(1), 3–11 (2008). [CrossRef]
  4. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  7. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express17(3), 1628–1635 (2009). [CrossRef] [PubMed]
  8. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  9. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  10. C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photonics Rev.4(2), 192–204 (2010). [CrossRef]
  11. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D. Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express18(25), 26695–26703 (2010). [CrossRef] [PubMed]
  12. I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express14(7), 2969–2978 (2006). [CrossRef] [PubMed]
  13. K. Busch and S. John, “Liquid-Crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett.83(5), 967–970 (1999). [CrossRef]
  14. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000). [CrossRef]
  15. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett.82(17), 2767–2769 (2003). [CrossRef]
  16. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett.85(3), 360–362 (2004). [CrossRef]
  17. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” in Microfluid Nanofluid (Springer-Verlag, 2007), pp. 81–95.
  18. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  19. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  20. A. Casas Bedoya, S. Mahmoodian, C. Monat, S. Tomljenovic-Hanic, C. Grillet, P. Domachuk, E. C. Mägi, B. J. Eggleton, and R. W. van der Heijden, “Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration,” Opt. Express18(26), 27280–27290 (2010). [CrossRef] [PubMed]
  21. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express16(20), 15887–15896 (2008). [CrossRef] [PubMed]
  22. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett.89(21), 211117 (2006). [CrossRef]
  23. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006). [CrossRef] [PubMed]
  24. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009). [CrossRef]
  25. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett.29(24), 2858–2860 (2004). [CrossRef] [PubMed]
  26. H. Kurt and D. S. Citrin, “Reconfigurable multimode photonic-crystal waveguides,” Opt. Express16(16), 11995–12001 (2008). [CrossRef] [PubMed]
  27. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  28. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett.91(12), 121103 (2007). [CrossRef]
  29. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett.33(19), 2206–2208 (2008). [CrossRef] [PubMed]
  30. E. Yablonovitch, “Optics: Liquid versus photonic crystals,” Nature401(6753), 539–541 (1999). [CrossRef]
  31. The European FP6 Network of Excellence for photonic integrated components and circuits, http://www.epixnet.org
  32. A. C. Bedoya, C. Monat, P. Domachuk, C. Grillet, and B. J. Eggleton, “Measuring the dispersive properties of liquids using a microinterferometer,” Appl. Opt.50(16), 2408–2412 (2011). [CrossRef] [PubMed]
  33. A. F. Stalder, G. Kulik, D. Sage, L. Barbieri, and P. Hoffmann, “A Snake-Based Approach to Accurate Determination of Both Contact Points and Contact Angles,” Colloids Surf. A Physicochem. Eng. Asp.286(1-3), 92–103 (2006). [CrossRef]
  34. C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express12(22), 5440–5447 (2004). [CrossRef] [PubMed]
  35. RSoft Inc, RSoft Fullwave FDTD code, http://www.rsoftdesign.com .
  36. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photoniccrystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004). [CrossRef]
  37. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express15(3), 1228–1233 (2007). [CrossRef] [PubMed]
  38. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007). [CrossRef]
  39. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  40. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited