OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11064–11072

Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz

Michio Ishikawa, Makoto Katsura, Satoru Nakashima, Yuka Ikemoto, and Hidekazu Okamura  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11064-11072 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Infrared (IR) spectroscopy is a versatile analytical method and nano-scale spatial resolution could be achieved by scattering type near-field optical microscopy (s-SNOM). The spectral bandwidth was, however, limited to approximately 300 cm−1 with a laser light source. In the present study, the development of a broadband mid-IR near-field spectroscopy with a ceramic light source is demonstrated. A much wider bandwidth (at least 3000 to 1000 cm−1) is achieved with a ceramic light source. The experimental data on quartz Si-O phonon resonance bands are well reproduced by theoretical simulations indicating the validity of the present broadband near-field IR spectroscopy.

© 2012 OSA

OCIS Codes
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: March 23, 2012
Revised Manuscript: April 14, 2012
Manuscript Accepted: April 18, 2012
Published: April 27, 2012

Michio Ishikawa, Makoto Katsura, Satoru Nakashima, Yuka Ikemoto, and Hidekazu Okamura, "Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz," Opt. Express 20, 11064-11072 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer-Verlag, 1998), Chap. 2.
  2. Y. Inouye, “Apertureless metallic probes for near-field microscopy,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer-Verlag, 2001), pp. 29–48.
  3. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011). [CrossRef]
  4. K. Nakamura, M. E. Zolensky, S. Tomita, S. Nakashima, and K. Tomeoka, “Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions,” Int. J. Astrobiol.1(3), 179–189 (2002). [CrossRef]
  5. Y. Kebukawa, S. Nakashima, M. Ishikawa, K. Aizawa, T. Inoue, K. Nakamura-Messenger, and M. E. Zolensky, “Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy,” Meteorit. Planet. Sci.45(3), 394–405 (2010). [CrossRef]
  6. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, Y. Ikemoto, and H. Okamura, “Application of a modulating technique to detect near-field signals using a conventional IR spectrometer with a ceramic light source,” e-J. Surf. Sci. Nanotechno9, 40–45 (2011). [CrossRef]
  7. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express19(13), 12469–12479 (2011). [CrossRef] [PubMed]
  8. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011). [CrossRef] [PubMed]
  9. Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-field spectroscopy with infrared synchrotron radiation source,” e-J. Surf. Sci. Nanotechno9, 63–66 (2011). [CrossRef]
  10. Y. Ikemoto, M. Ishikawa, S. Nakashima, H. Okamura, Y. Haruyama, S. Matsui, T. Moriwaki, and T. Kinoshita, “Development of scattering near-field optical microspectroscopy apparatus using an infrared synchrotron radiation source,” Opt. Commun.285(8), 2212–2217 (2012). [CrossRef]
  11. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000). [CrossRef]
  12. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15(14), 8550–8565 (2007). [CrossRef] [PubMed]
  13. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999). [CrossRef]
  14. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995). [CrossRef] [PubMed]
  15. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980). [CrossRef]
  16. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett.48(14), 957–960 (1982). [CrossRef]
  17. P. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure - applications to surface enhanced spectroscopy,” Surf. Sci.124(2-3), 506–528 (1983). [CrossRef]
  18. I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000). [CrossRef]
  19. L. V. Lindell, G. Dassios, and K. I. Nikoskinen, “Electrostatic image theory for the conducting prolate spheroid,” J. Phys. D Appl. Phys.34(15), 2302–2307 (2001). [CrossRef]
  20. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol.4(3), 153–157 (2009). [CrossRef] [PubMed]
  21. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical resonance tuning and phase effects in optical near-field interaction,” Nano Lett.4(9), 1669–1672 (2004). [CrossRef]
  22. S. C. Schneider, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett.90(14), 143101 (2007). [CrossRef]
  23. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett.100(25), 256403 (2008). [CrossRef] [PubMed]
  24. I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, “Electrostatic image theory for an anisotropic half-space slightly deviating from transverse isotropy,” Radio Sci.31(6), 1361–1368 (1996). [CrossRef]
  25. M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express16(16), 12302–12312 (2008), http://www.opticsinfobase.org/abstract.cfm?id=170287 . [CrossRef] [PubMed]
  26. S. C. Schneider, S. Grafström, and L. Eng, “Scattering near-field optical microscopy of optically anisotropic systems,” Phys. Rev. B71(11), 115418 (2005). [CrossRef]
  27. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett.85(14), 2715 (2004). [CrossRef]
  28. W. G. Spitzer and D. A. Kleinman, “Infrared lattice bands of quartz,” Phys. Rev.121(5), 1324–1335 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited