OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11097–11108

Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning

Jonathan P. Singer, Jae-Hwang Lee, Steven E. Kooi, and Edwin L. Thomas  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11097-11108 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the next generation of phoXonic, plasmonic, opto-mechanical and microfluidic devices, the capability to create 3D microstructures is highly desirable. Fabrication of such structures by conventional top-down techniques generally requires multiple time-consuming steps and is limited in the ability to define features spanning multiple layers at prescribed angles. 3D direct write lithography (3DDW) has the capability to draw nearly arbitrary structures, but is an inherently slow serial writing process. Here we present a method, denoted focused proximity field nanopatterning (FPnP), that combines 3DDW with single or multiphoton interference lithography (IL). By exposing a thick photoresist layer having a phase mask pattern imprinted on its surface with a tightly focused laser beam, we produce locally unique complex structures. The morphology can be varied based on beam and mask parameters. Patterns may be written rapidly in a single shot mode with arbitrary positions defined by the direct write, thus exploiting the control of 3DDW with the enhanced speed of phase mask IL. Here we show the ability for this technique to rapidly produce arrays of “stand-up” far IR resonators.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.3918) Materials : Metamaterials

ToC Category:
Laser Microfabrication

Original Manuscript: March 16, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 26, 2012
Published: April 30, 2012

Jonathan P. Singer, Jae-Hwang Lee, Steven E. Kooi, and Edwin L. Thomas, "Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning," Opt. Express 20, 11097-11108 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett.76(19), 2656–2658 (2000). [CrossRef]
  2. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett.23(22), 1745–1747 (1998). [CrossRef] [PubMed]
  3. M. Farsari, G. Filippidis, and C. Fotakis, “Fabrication of three-dimensional structures by three-photon polymerization,” Opt. Lett.30(23), 3180–3182 (2005). [CrossRef] [PubMed]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  5. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009). [CrossRef] [PubMed]
  6. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18(10), 10209–10221 (2010). [CrossRef] [PubMed]
  7. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006). [CrossRef]
  8. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett.97(22), 221102 (2010). [CrossRef]
  9. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. (Deerfield Beach Fla.)22(32), 3578–3582 (2010). [CrossRef] [PubMed]
  10. J. Scrimgeour, D. N. Sharp, C. F. Blanford, O. M. Roche, R. G. Denning, and A. J. Turberfield, “Three-dimensional optical lithography for photonic microstructures,” Adv. Mater. (Deerfield Beach Fla.)18(12), 1557–1560 (2006). [CrossRef]
  11. S. Jeon, D. J. Shir, Y. S. Nam, R. Nidetz, M. Highland, D. G. Cahill, J. A. Rogers, M. F. Su, I. F. El-Kady, C. G. Christodoulou, and G. R. Bogart, “Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures,” Opt. Express15(10), 6358–6366 (2007). [CrossRef] [PubMed]
  12. J. P. Singer, S. E. Kooi, and E. L. Thomas, “Focused laser spike (FLaSk) annealing of photoactivated chemically amplified resists for rapid hierarchical patterning,” Nanoscale3(7), 2730–2738 (2011). [CrossRef] [PubMed]
  13. M. Li, K. Douki, K. Goto, X. Li, C. Coenjarts, D. M. Smilgies, and C. K. Ober, “Spatially controlled fabrication of nanoporous block copolymers,” Chem. Mater.16(20), 3800–3808 (2004). [CrossRef]
  14. H.-W. Li and W. T. S. Huck, “Ordered block-copolymer assembly using nanoimprint lithography,” Nano Lett.4(9), 1633–1636 (2004). [CrossRef]
  15. S. A. Pruzinsky and P. V. Braun, “Fabrication and characterization of two-photon polymerized features in colloidal crystals,” Adv. Funct. Mater.15(12), 1995–2004 (2005). [CrossRef]
  16. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008). [CrossRef]
  17. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12428–12433 (2004). [CrossRef] [PubMed]
  18. C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett.11(6), 2533–2537 (2011). [CrossRef] [PubMed]
  19. M. C. George, E. C. Nelson, J. A. Rogers, and P. V. Braun, “Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks,” Angew. Chem. Int. Ed. Engl.48(1), 144–148 (2009). [CrossRef] [PubMed]
  20. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun.282(18), 3746–3750 (2009). [CrossRef]
  21. K. B. Fan, A. C. Strikwerda, H. Tao, R. D. Averitt, and X. Zhang, “3D stand-up metamaterials with a purely magnetic resonance at terahertz frequencies,” in Mems 2010: 23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, (2010) pp. 843–846.
  22. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, “Micrometer-scale cubic unit cell 3D metamaterial layers,” Adv. Mater. (Deerfield Beach Fla.)22(44), 5053–5057 (2010). [CrossRef] [PubMed]
  23. J. H. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. Van Dorpe, and D. H. Gracias, “Nanoscale origami for 3D optics,” Small7(14), 1943–1948 (2011). [CrossRef] [PubMed]
  24. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett.94(3), 037402 (2005). [CrossRef] [PubMed]
  25. J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, “Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications,” Appl. Phys. Lett.88(18), 181112 (2006). [CrossRef]
  26. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express14(2), 800–809 (2006). [CrossRef] [PubMed]
  27. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  28. C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi, B Basic Res.244(4), 1181–1187 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited