OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11109–11120

All-fiber Mach-Zehnder interferometers for sensing applications

Lecheng Li, Li Xia, Zhenhai Xie, and Deming Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11109-11120 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a thinned fiber based Mach-Zehnder interferometer for multi-purpose sensing applications. The sensor head is formed by all-fiber in-line singlemode-multimode-thinned-singlemode (SMTS) fiber structure, only using the splicing method. The principle of operation relies on the effect that the thinned fiber cladding modes interference with the core mode by employing a multimode fiber as a mode coupler. Experimental results showed that the liquid refractive index information can be simultaneously provided from measuring the sensitivity of the liquid level. A 9.00 mm long thinned fiber sensor at a wavelength of 1538.7228 nm exhibits a water level sensitivity of −175.8 pm/mm, and refractive index sensitivity as high as −1868.42 (pm/mm)/RIU, respectively. The measuring method is novel, for the first time to our knowledge. In addition, it also demonstrates that by monitoring the wavelength shift, the sensor at a wavelength of 1566.4785 nm exhibits a refractive index sensitivity of −25.2935 nm/RIU, temperature sensitivity of 0.0615 nm/°C, and axial strain sensitivity of −2.99 pm/με, respectively. Moreover, the sensor fabrication process is very simple and cost effective.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: March 16, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 26, 2012
Published: April 30, 2012

Lecheng Li, Li Xia, Zhenhai Xie, and Deming Liu, "All-fiber Mach-Zehnder interferometers for sensing applications," Opt. Express 20, 11109-11120 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett.17(11), 2397–2399 (2005). [CrossRef]
  2. H. J. Patrick, A. D. Kersey, F. Bucholtz, K. J. Ewing, J. B. Judkins, and A. M. Vengsarkar, ““Chemical sensor based on long-period fiber grating response to index of refraction,” Proc. Lasers and Electro-Optics.11, 420–421 (1997).
  3. P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol.15(8), 1576–1580 (2004). [CrossRef]
  4. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005). [CrossRef]
  5. P. Lu and Q. Chen, “Fiber Bragg grating sensor for simultaneous measurement of flow rate and direction,” Meas. Sci. Technol.19(12), 125302–125309 (2008). [CrossRef]
  6. Y. J. Rao, “Recent progress in fiber optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol.12(3), 227–237 (2006). [CrossRef]
  7. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  8. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-line Fabry-Perot Etalons based on hollow-core photonic bandgap fibers for high temperature applications,” J. Lightwave Technol.27(19), 4360–4365 (2009). [CrossRef]
  9. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett.32(18), 2662–2664 (2007). [CrossRef] [PubMed]
  10. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  11. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett.29(4), 346–348 (2004). [CrossRef] [PubMed]
  12. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett.36(19), 3753–3755 (2011). [CrossRef] [PubMed]
  13. Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett.20(8), 626–628 (2008). [CrossRef]
  14. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express16(15), 11369–11375 (2008). [CrossRef] [PubMed]
  15. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express19(9), 7937–7944 (2011). [CrossRef] [PubMed]
  16. J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett.22(8), 561–563 (1997). [CrossRef] [PubMed]
  17. P. R. Horche, M. Lopez-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photon. Technol. Lett.1(7), 184–187 (1989). [CrossRef]
  18. X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol.1(4), 373–376 (1995). [CrossRef]
  19. J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett.18(11), 1258–1260 (2006). [CrossRef]
  20. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007). [CrossRef]
  21. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009). [CrossRef] [PubMed]
  22. C. Zhou, L. Ding, D. Wang, Y. Kuang, and D. Jiang, “Thinned fiber Bragg grating magnetic field sensor with magnetic fluid,” Proc. SPIE8034, 803409, 803409-6 (2011). [CrossRef]
  23. S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011). [CrossRef]
  24. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010). [CrossRef] [PubMed]
  25. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  26. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012). [CrossRef] [PubMed]
  27. J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Fiber-optic sensor for liquid level measurement,” Opt. Lett.36(17), 3425–3427 (2011). [CrossRef] [PubMed]
  28. Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys.170(1-2), 62–65 (2011). [CrossRef]
  29. D. R. Lide, Handbook of Chemistry and Physics, 70th ed. (CRC Press, 2004), Chap. 6.
  30. J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited