OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11121–11136

Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure

Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11121-11136 (2012)
http://dx.doi.org/10.1364/OE.20.011121


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a graded SiNx and SiOxNy structure is proposed as antireflection coatings deposited on top of amorphous silicon (α-Si) thin-film solar cell. The structural parameters are optimized by differential evolution in order to enhance the optical absorption of solar cells to the greatest degree. The optimal design result demonstrates that the nonlinear profile of dielectric constant is superior to the linear profile, and discrete multilayer graded antireflection coatings can outperform near continuously graded antireflection coatings. What’s more, the electric field intensity distributions clearly demonstrate the proposed graded SiNx and SiOxNy structure can remarkably increase the magnitude of electric field of a-Si:H layer and hence, enhance the light trapping of a-Si:H thin-film solar cells in the whole visible and near-infrared spectrum. Finally, we have compared the optical absorption enhancements of proposed graded SiNx and SiOxNy structure with nanoparticles structure, and demonstrated that it can result in higher enhancements compared to the dielectric SiC and TiO2 nanoparticles. We have shown that the optimal graded SiNx and SiOxNy structure optimized by differential evolution can reach 33.31% enhancement which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC and TiO2 nanoparticles.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties
(310.1210) Thin films : Antireflection coatings
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design

ToC Category:
Solar Energy

History
Original Manuscript: February 29, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 20, 2012
Published: April 30, 2012

Citation
Yongxiang Zhao, Fei Chen, Qiang Shen, and Lianmeng Zhang, "Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure," Opt. Express 20, 11121-11136 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  2. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett.28(11), 671–673 (1976). [CrossRef]
  3. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovolt. Res. Appl.12(23), 69–92 (2004). [CrossRef]
  4. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solution,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002). [CrossRef]
  5. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef]
  6. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  7. L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc.S1–S11(1), 51–56 (1879). [CrossRef]
  8. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010). [CrossRef]
  9. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Opt. Express17(6), 4646–4651 (2009). [CrossRef]
  10. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater.20(2), 259–265 (2010). [CrossRef]
  11. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983). [CrossRef]
  12. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt.41(16), 3075–3083 (2002). [CrossRef]
  13. W. Qiu, Y. M. Kang, and L. L. Goddard, “Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings,” Appl. Phys. Lett.96(14), 141116 (2010). [CrossRef]
  14. K. S. Yee, “Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  15. R. J. Luebbers, F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromagn. Compat.32(3), 222–227 (1990). [CrossRef]
  16. http://www.sopra-sa.com .
  17. Y. X. Zhao, F. Chen, H. Y. Chen, N. Li, Q. Shen, and L. M. Zhang, “The microstructure design optimization of negative index metamaterials using genetic algorithm,” Prog. Electromag. Res. Lett.22, 95–108 (2011).
  18. K. Siakavara, “Novel fractal antenna arrays for satellite networks: circular ring sierpinski carpet arrays optimized by genetic algorithms,” Prog. Electromag. Res.103, 115–138 (2010). [CrossRef]
  19. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim.11(4), 341–359 (1997). [CrossRef]
  20. Y. X. Zhao, F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, “Optimizing low loss negative index metamaterial for visible spectrum using differential evolution,” Opt. Express19(12), 11605–11614 (2011). [CrossRef]
  21. Y. X. Zhao, F. Chen, Q. Shen, and L. M. Zhang, “Optimizing low loss silver nanowires structure metamaterial at yellow light spectrum with differential evolution,” Phys. Lett. A376(4), 252–256 (2012). [CrossRef]
  22. Yu. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17(12), 10195–10205 (2009). [CrossRef]
  23. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111–073113 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited