OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11189–11206

Variations in the optical scattering properties of phytoplankton cultures

Wen Zhou, Guifen Wang, Zhaohua Sun, Wenxi Cao, Zhantang Xu, Shuibo Hu, and Jun Zhao  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11189-11206 (2012)
http://dx.doi.org/10.1364/OE.20.011189


View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering and backscattering coefficients of 15 phytoplankton species were determined in the laboratory using the acs and BB9 instruments. The spectral variability of scattering properties was investigated and the homogenous sphere model based on Mie theory was also evaluated. The scattering efficiencies at 510 nm varied from 1.42 to 2.26, and the backscattering efficiencies varied from 0.003 to 0.020. The backscattering ratios at 510 nm varied from 0.17% to 0.97%, with a mean value of 0.58%. The scattering properties were influenced by algal cell size and cellular particulate organic carbon content rather than the chlorophyll a concentration. Comparison of the measured results to the values estimated using the homogenous sphere model showed that: (1) The model could well reproduce the spectral scattering coefficient with relative deviations of 5–39%, which indicates that cell shape and internal structure have no significant effects on predicting the scattering spectra; (2) Although the homogenous sphere model generally reflected the spectral trend of backscattering spectra for most species, it severely underestimated the backscattering coefficients by 1.4–48.6 folds at 510 nm. The deviations for Chaetoceros sp. and Microcystis aeruginosa were large and might be due to algal cell chain links and intracellular gas vacuoles, respectively.

© 2012 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5850) Scattering : Scattering, particles
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 11, 2012
Revised Manuscript: April 18, 2012
Manuscript Accepted: April 19, 2012
Published: May 1, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Wen Zhou, Guifen Wang, Zhaohua Sun, Wenxi Cao, Zhantang Xu, Shuibo Hu, and Jun Zhao, "Variations in the optical scattering properties of phytoplankton cultures," Opt. Express 20, 11189-11206 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Roesler and S. L. McLeroy-Etheridge, “Remote detection of harmful algal blooms,” in Ocean Optics XIV, S. G. Ackleson and R. Frouin, eds. (SPIE, 1998), pp. 117–128.
  2. J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data,” Cont. Shelf Res.28(1), 137–158 (2008). [CrossRef]
  3. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res.114(C9), C09015 (2009). [CrossRef]
  4. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global variability of phytoplankton functional types from space: assessment via the particle size distribution,” Biogeosciences Discuss.7(3), 4295–4340 (2010). [CrossRef]
  5. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt.25(4), 571–580 (1986). [CrossRef] [PubMed]
  6. D. Stramski, A. Morel, and A. Bricaud, “Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index,” Appl. Opt.27(19), 3954–3956 (1988). [CrossRef] [PubMed]
  7. S. Bernard, T. A. Probyn, and R. G. Barlow, “Measured and modeled optical properties of particulate matter in the southern Benguela,” S. Afr. J. Sci.97, 410–420 (2001).
  8. A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res.10(5), 851–873 (1988). [CrossRef]
  9. Y. H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res.39(11-12), 1835–1855 (1992). [CrossRef]
  10. D. Stramski and R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr.38(7), 1347–1364 (1993). [CrossRef]
  11. D. Stramski, G. Rosenberg, and L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol.115(3), 363–372 (1993). [CrossRef]
  12. D. Stramski, A. Sciandra, and H. Claustre, “Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana,” Limnol. Oceanogr.47(2), 392–403 (2002). [CrossRef]
  13. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt.40(18), 2929–2945 (2001). [CrossRef] [PubMed]
  14. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004). [CrossRef]
  15. J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr.37(8), 1680–1690 (1992). [CrossRef]
  16. A. Bricaud, J. R. V. Zaneveld, and J. C. Kitchen, “Backscattering efficiency of cocoolithophorids: use of a three-layered sphere model,” Proc. SPIE1750, 27–33 (1992). [CrossRef]
  17. A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 311–321 (2004). [CrossRef]
  18. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine like particles—from theory to observation,” in Oceanography and Marine Biology: an Annual Review, R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, eds. (Taylor & Francis, 2007), Vol. 45, pp. 1–38.
  19. A. Quirantes and S. Bernard, “Light scattering methods for modeling algal particles as a collection of coated and/or nonspherical scatterers,” J. Quant. Spectrosc. Radiat. Transf.100(1-3), 315–324 (2006). [CrossRef]
  20. M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr.34(8), 1587–1600 (1989). [CrossRef]
  21. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr.43(6), 1180–1197 (1998). [CrossRef]
  22. K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr.43(5), 859–869 (1998). [CrossRef]
  23. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size chemical composition and taxonomy,” J. Plankton Res.26(2), 191–212 (2004). [CrossRef]
  24. A. L. Whitmire, W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles, “Spectral backscattering properties of marine phytoplankton cultures,” Opt. Express18(14), 15073–15093 (2010). [CrossRef] [PubMed]
  25. G. Dall’Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences6(6), 947–967 (2009). [CrossRef]
  26. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt.45(21), 5294–5309 (2006). [CrossRef] [PubMed]
  27. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt.36(24), 6057–6067 (1997). [CrossRef] [PubMed]
  28. A. Knap, A. Michaels, A. Close, H. Ducklow, and A. Dickson, Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, JGOFS Report No. 19 (Reprint of the IOC Manuals and Guides No. 29, UNESCO, Paris, 1994).
  29. F. Vidussi, H. Claustre, J. Bustillos-Guzman, C. Cailliau, and J. C. Marty, “Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinyl-chlorophyll a and zeaxanthin from lutein,” J. Plankton Res.18(12), 2377–2382 (1996). [CrossRef]
  30. J. R. V. Zaneveld and J. C. Kitchen, ““The scattering error correction of reflecting-tube absorption waters,” Proc. SPIE2258, 44–55 (1994). [CrossRef]
  31. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr.28(5), 816–832 (1983). [CrossRef]
  32. A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci.214, 521–559 (1986).
  33. A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography S.Demers, ed., NATO ASI Series. G27 (1991) pp. 141–188.
  34. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res.28(11), 1375–1393 (1981). [CrossRef]
  35. E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia574(1), 149–159 (2007). [CrossRef]
  36. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences5(1), 171–201 (2008). [CrossRef]
  37. D. Stramski, “Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content,” Deep Sea Res. Part I Oceanogr. Res. Pap.46(2), 335–351 (1999). [CrossRef]
  38. H. J. Hu and Y. X. Wei, The Freshwater Algal of China, Systematics, Taxonomy and Ecology (Science Publisher, 2006).
  39. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res.18(12), 2223–2249 (1996). [CrossRef]
  40. S. Liu, “Dynamic effects of phosphorus in plankton ecosystem in the Pearl River Estuary and adjacent waters,” Ph.D dissertation (Graduate School of Chinese Academy of Science, 2005.
  41. H. Guo, Illustrations of Planktons Responsible for the Blooms in Chinese Coastal Waters (Oceanpress, 2004).
  42. S. Bernard, T. A. Probyn, and A. Quirantes, “Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry,” Biogeosciences Discuss.6(1), 1497–1563 (2009). [CrossRef]
  43. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt.42(18), 3634–3646 (2003). [CrossRef] [PubMed]
  44. J. R. V. Zaneveld and J. C. Kitchen, “The variation in the inherent optical properties of phytoplankton near an absorption peak as determined by various models of cell structure,” J. Geophys. Res.100(C7), 13309–13320 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited