OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11218–11231

Relief diffracted elements recorded on absorbent photopolymers

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11218-11231 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information for characterizing and understanding the material behavior. In this paper we use a 3-dimensional model, based on direct parameter measurements, for predicting the relief structures generated on without-coverplate photopolymers. We have analyzed different spatial frequency and recording intensity distributions such as binary and blazed periodic patterns. This model was successfully applied to different photopolymers with different values of monomer diffusion.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials

ToC Category:
Diffraction and Gratings

Original Manuscript: February 22, 2012
Revised Manuscript: March 30, 2012
Manuscript Accepted: March 30, 2012
Published: May 1, 2012

S. Gallego, A. Márquez, M. Ortuño, J. Francés, I. Pascual, and A. Beléndez, "Relief diffracted elements recorded on absorbent photopolymers," Opt. Express 20, 11218-11231 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Weiser, F. K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp.296(1), 133–137 (2010). [CrossRef]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88(7), 071103 (2006). [CrossRef]
  3. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic Data Storage Technology,” IBM J. Res. Develop.44(3), 341–368 (2000). [CrossRef]
  4. G. P. Nordinand and A. R. Tanguay., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett.17(23), 1709–1711 (1992). [CrossRef] [PubMed]
  5. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci.40(15), 4129–4132 (2005). [CrossRef]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006). [CrossRef] [PubMed]
  7. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  8. R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  9. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE7717, 77170D, 77170D–12 (2010). [CrossRef]
  10. L. M. C. Sagis, “Generalized curvature expansion for the surface internal energy,” Physica A246(3–4), 591–608 (1997). [CrossRef]
  11. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A253(5–6), 317–321 (1999). [CrossRef]
  12. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011). [CrossRef]
  13. F. Mendel, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem.51, 4504–4526 (2003).
  14. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express15(19), 12425–12435 (2007). [CrossRef] [PubMed]
  15. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater.33(3), 531–537 (2011). [CrossRef]
  16. S. Gallego, A. Márquez, M. Ortuño, J. Francés, S. Marini, A. Beléndez, and I. Pascual, “Surface relief model for photopolymers without cover plating,” Opt. Express19(11), 10896–10906 (2011). [CrossRef] [PubMed]
  17. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid Ternary Modulation Applied to Multiplexing Holograms in Photopolymers for Data Page Storage,” J. Lightwave Technol.28, 776–783 (2010).
  18. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng.40(11), 2558–2564 (2001). [CrossRef]
  19. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt.48(22), 4403–4413 (2009). [CrossRef] [PubMed]
  20. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express17(20), 18279–18291 (2009). [CrossRef] [PubMed]
  21. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt.41(5), 845–852 (2002). [CrossRef] [PubMed]
  22. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  23. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  24. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt.39(35), 6545–6555 (2000). [CrossRef] [PubMed]
  25. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)-acrylamide photopolymer,” Appl. Opt.42(29), 5839–5845 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited