OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11357–11369

Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications

Uwe Bog, Klaus Huska, Frieder Maerkle, Alexander Nesterov-Mueller, Uli Lemmer, and Timo Mappes  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11357-11369 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sensors based on surface plasmon resonances (SPRs) have proven themselves as promising devices for molecular investigations – still there is potential to determine the geometrical parameter set for optimal sensing performance. Here we propose a comprehensive design rule for one-dimensional plasmonic grating structures. We present an analytical approach, which allows for estimation of the grating parameters for best SPR coupling efficiency for any geometry and design wavelength. On the example of sinusoidal gratings, we expand this solution and discuss numerically and experimentally, how the grating modulation depth can be refined to achieve optimal signal resolution. Finally, we propose a benchmark factor to assess the sensor performance, which can be applied to any sensing scheme utilizing resonances, allowing for comparison of different technological platforms.

© 2012 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: March 26, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 20, 2012
Published: May 2, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Uwe Bog, Klaus Huska, Frieder Maerkle, Alexander Nesterov-Mueller, Uli Lemmer, and Timo Mappes, "Design of plasmonic grating structures towards optimum signal discrimination for biosensing applications," Opt. Express 20, 11357-11369 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev.108(2), 423–461 (2008). [CrossRef] [PubMed]
  2. L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys.104(11), 111101 (2008). [CrossRef]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  5. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol.17(8), R93–R116 (2006). [CrossRef]
  6. R. B. M. Schasfoort and A. J. Tudos, Handbook of surface plasmon resonance (RSC Publishing, 2008).
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  9. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron.23(2), 151–160 (2007). [CrossRef] [PubMed]
  10. M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys.131(3), 034708 (2009). [CrossRef] [PubMed]
  11. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  12. J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem.107(1), 154–161 (2005). [CrossRef]
  13. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010). [CrossRef] [PubMed]
  14. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010). [CrossRef] [PubMed]
  15. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 396–402 (1902).
  16. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  17. R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21(22), 1530–1533 (1968). [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3(11), 1780–1787 (1986). [CrossRef]
  19. I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995). [CrossRef]
  20. S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys.79(9), 7383 (1996). [CrossRef]
  21. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett.97(13), 131103 (2010). [CrossRef]
  22. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  23. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006). [CrossRef]
  24. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  25. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  26. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005). [CrossRef]
  27. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J.8(12), 2074–2079 (2008). [CrossRef]
  28. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  29. G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron.22(1), 35–41 (2006). [CrossRef] [PubMed]
  30. N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci.10(01n02), 259–262 (2011). [CrossRef]
  31. E. Popov, “Plasmon interactions in metallic gratings: ω- and k-minigaps and their connection with poles and zeros,” Surf. Sci.222(2-3), 517–529 (1989). [CrossRef]
  32. F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B15(12), 5618–5626 (1977). [CrossRef]
  33. R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B262, 468 (1966) (in French).
  34. A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys.93, 1654 (1987) (in Russian).
  35. V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc.68, 50–53 (1990).
  36. A. V. Nesterov-Müller, Laser beams with axially symmetric polarisation, (Schatura, 2000).
  37. http://www.allresist.de/wEnglish/produkte/SonderanfertigungenExperimentalmuster/0041.php
  38. RSoft DiffractMOD, “RSoft Design Group.” http://www.rsoftdesign.com
  39. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999). [CrossRef]
  40. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited