OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11370–11381

Electromagnetic field energy density in homogeneous negative index materials

Shivanand and Kevin J. Webb  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11370-11381 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

© 2012 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: March 27, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 25, 2012
Published: May 2, 2012

Shivanand and Kevin J. Webb, "Electromagnetic field energy density in homogeneous negative index materials," Opt. Express 20, 11370-11381 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  3. K. J. Webb and L. Thylén, “A perfect lens material condition from adjacent absorptive and gain resonances,” Opt. Lett. 33, 747–749 (2008). [CrossRef] [PubMed]
  4. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).
  5. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  6. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A 3, 233–245 (1970). [CrossRef]
  7. V. G. Polevoi, “Maximum energy extractable from an electromagnetic field,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 33, 818–825 (1990).
  8. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002). [CrossRef]
  9. S. A. Tretyakov, “Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss,” Phys. Lett. A 343, 231–237 (2005). [CrossRef]
  10. A. D. Boardman and K. Marinov, “Electromagnetic energy in a dispersive metamaterial,” Phys. Rev. B 73, 165110 (2006). [CrossRef]
  11. T. J. Cui and J. A. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B 70, 205106 (2004). [CrossRef]
  12. F. D. Nunes, T. C. Vasconcelos, M. Bezerra, and J. Weiner, “Electromagnetic energy density in dispersive and dissipative media,” J. Opt. Soc. Am. B 28, 1544–1552 (2011). [CrossRef]
  13. R. W. Ziolkowski, “Superluminal transmission of information through an electromagnetic medium,” Phys. Rev. E 63, 046604 (2001). [CrossRef]
  14. K. J. Webb and Shivanand, “Electromagnetic field energy in dispersive materials,” J. Opt. Soc. Am. B 27, 1215–1220 (2010). [CrossRef]
  15. Y. Ben-Aryeh, “Energy dispersion relation for negative refraction (NR) materials,” Opt. Commun. 284, 5281–5283 (2011). [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics, 3rd ed., (Wiley, 1999).
  17. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Publishing Group, 2001).
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  19. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, “Metrics for negative refractive index materials,” Phys. Rev. E 70, 035602 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited