OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11433–11444

Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment

Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11433-11444 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~107/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R = 48 ± 12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, the powers of pumps. We also make a theoretical analysis in detail and the theoretical predictions are in reasonable agreement with our experimental results.

© 2012 OSA

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Quantum Optics

Original Manuscript: February 9, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: April 26, 2012
Published: May 4, 2012

Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo, "Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment," Opt. Express 20, 11433-11444 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62(19), 2205–2208 (1989). [CrossRef] [PubMed]
  2. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52(5), R3429–R3432 (1995). [CrossRef] [PubMed]
  3. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74(18), 3600–3603 (1995). [CrossRef] [PubMed]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414(6862), 413–418 (2001). [CrossRef] [PubMed]
  5. J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature421(6924), 721–725 (2003). [CrossRef] [PubMed]
  6. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A69(1), 013803 (2004). [CrossRef]
  7. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999). [CrossRef]
  8. F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line,” Opt. Lett.33(19), 2191–2193 (2008). [CrossRef] [PubMed]
  9. F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun.283(14), 2974–2977 (2010). [CrossRef]
  10. M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett.94(20), 201105 (2009). [CrossRef]
  11. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett.101(19), 190501 (2008). [CrossRef] [PubMed]
  12. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature423(6941), 731–734 (2003). [CrossRef] [PubMed]
  13. D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science306(5696), 663–666 (2004). [CrossRef] [PubMed]
  14. S. Chen, Y. A. Chen, T. Strassel, Z. S. Yuan, B. Zhao, J. Schmiedmayer, and J. W. Pan, “Deterministic and storable single-photon source based on a quantum memory,” Phys. Rev. Lett.97(17), 173004 (2006). [CrossRef] [PubMed]
  15. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett.94(18), 183601 (2005). [CrossRef] [PubMed]
  16. S. W. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett.100(18), 183603 (2008). [CrossRef] [PubMed]
  17. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express16(26), 21708–21713 (2008). [CrossRef] [PubMed]
  18. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett.26(6), 064204 (2009). [CrossRef]
  19. R. T. Willis, “Photon pair production from a hot atomic ensemble in the diamond configuration,” Ph. D. thesis, University of Maryland, College Park, (2009).
  20. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett.96(9), 093604 (2006). [CrossRef] [PubMed]
  21. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A82(5), 053842 (2010). [CrossRef]
  22. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,” Opt. Express19(15), 14632–14641 (2011). [CrossRef] [PubMed]
  23. J. M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. I. Perturbation theory,” Phys. Rev. A74(2), 023808 (2006). [CrossRef]
  24. C. H. Raymond Ooi, Q. Sun, M. S. Zubairy, and M. O. Scully, “Correlation of photon pairs from the double Raman amplifier: generalized analytical quantum Langevin theory,” Phys. Rev. A75(1), 013820 (2007). [CrossRef]
  25. S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation nearatomic resonance,” J. Opt. Soc. Am. B25(12), C98–C108 (2008). [CrossRef]
  26. R. W. Boyd, Nonlinear Optics 2nd ed (Academic Press, SanDiego, 1998).
  27. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Two-photon atomic coherence effect of transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms,” Chin. Phys. Lett.29(2), 024202 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited