OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11478–11486

Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators

Xuezhe Zheng, Ying Luo, Guoliang Li, Ivan Shubin, Hiren Thacker, Jin Yao, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11478-11486 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show enhanced optical bistability induced by free carrier absorption from junction doping in substrate-removed silicon ring modulators. Such linear thermal effects dominate the loss in high-speed depletion silicon ring modulators. Optical bistability was observed with about 100 μW of input optical power. We further show that such thermal interactions causes data-dependent ring resonance shifts, and consequently severely degrade the data modulation quality at low speeds. The frequency response of this effect was measured to be about 100~200 kHz.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability
(200.4650) Optics in computing : Optical interconnects
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: March 7, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 22, 2012
Published: May 4, 2012

Xuezhe Zheng, Ying Luo, Guoliang Li, Ivan Shubin, Hiren Thacker, Jin Yao, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy, "Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators," Opt. Express 20, 11478-11486 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Krishnamoorthy, Ron Ho, H. Xuezhe Zheng, Schwetman, P. Jon Lexau, Koka, I. GuoLiang Li, Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009). [CrossRef]
  2. X. Zheng, P. Koka, H. Schwetman, J. Lexau, R. Ho, J. E. Cunningham, and A.V. Krishnamoorthy, “Silicon photonic WDM point-to-point network for multi-chip processor interconnects,” Group IV Photonics, 2008 5th IEEE International Conference on, pp. 380–382, 2008.
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech.15(6), 998–1005 (1997). [CrossRef]
  5. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008). [CrossRef]
  6. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009). [CrossRef] [PubMed]
  7. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express15(15), 9600–9605 (2007). [CrossRef] [PubMed]
  8. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express18(5), 5151–5160 (2010). [CrossRef] [PubMed]
  9. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express18(16), 16858–16867 (2010). [CrossRef] [PubMed]
  10. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  11. G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, D. Feng, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power, high-performance Si photonic transmitter,” in Optical Fiber Communication Conference (OFC 2010), OMI2, 2010.
  12. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Exp.19, 20435–20443 (2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20435
  13. X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-Low Power Arrayed CMOS Silicon Photonic Transceivers for an 80 Gbps WDM Optical Link,” OFC/NFOEC 2011, PDPA1, 2011.
  14. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  15. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett.31(3), 341–343 (2006). [CrossRef] [PubMed]
  16. L. W. Luo, G. S. Wiederhecker, K. Preston, and M. Lipson, “Power insensitive silicon microring resonators,” Opt. Lett.37(4), 590–592 (2012). [CrossRef] [PubMed]
  17. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9623 .
  18. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express15(25), 17305–17312 (2007). [CrossRef] [PubMed]
  19. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices,” IEEE Photon. J.3, 567–579 (2011).
  20. R. Soref and B. Bennett, ““Electrooptical effect in silicon,”, IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  21. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express18(18), 19055–19063 (2010). [CrossRef] [PubMed]
  22. I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron. (2012). doi: 10.1007/s11082-012-9577-9.
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  24. X. Zheng, P. Koka, M. O. McCracken, H. Schwetman, J. G. Mitchell, J. Yao, R. Ho, K. Raj, and A. V. Krishnamoorthy, “Energy-efficient error control for tightly-coupled systems using silicon photonic interconnects,” J. Opt. Commun. Netw. 3, A21–A31 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited