OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11536–11547

Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared

Ping Jiang, Tim Schroeder, Michael Bath, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmüller, and Oliver Benson  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11536-11547 (2012)
http://dx.doi.org/10.1364/OE.20.011536


View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

At present, there exist a number of on-demand single photon sources with high emission rates and stability even at room temperature. However, their emission wavelength is restricted to specific transitions in single quantum emitters. Single photon generation in the near infrared, possibly within the telecom band, though most urgently needed, is particularly crucial. In this paper, we suggest an experimental method to convert visible single photons from a defect center in diamond to the near infrared. The conversion relies on efficient absorption by colloidal quantum dots and subsequent Stokes-shifted emission. The desired target wavelength can be chosen almost arbitrarily by selecting quantum dots with a suitable emission spectrum. A hollow core photonic crystal fiber selectively filled with a solution of quantum dots was used to achieve at the same time a single photon absorption probability of near unity and a very high re-collection efficiency of Stokes-shifted fluorescence (theoretically estimated to be 26%). A total conversion efficiency of light of 0.1% is achieved. Experimental strategies to significantly enhance this number are presented.

© 2012 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.6080) Optical devices : Sources
(300.2140) Spectroscopy : Emission
(300.6340) Spectroscopy : Spectroscopy, infrared
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 17, 2012
Manuscript Accepted: April 17, 2012
Published: May 4, 2012

Citation
Ping Jiang, Tim Schroeder, Michael Bath, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmüller, and Oliver Benson, "Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared," Opt. Express 20, 11536-11547 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett.89(6), 067901 (2002). [CrossRef] [PubMed]
  2. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011). [CrossRef]
  3. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86(8), 1502–1505 (2001). [CrossRef] [PubMed]
  4. A. Imamoğlu, P. Michler, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature406(6799), 968–970 (2000). [CrossRef] [PubMed]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85(2), 290–293 (2000). [CrossRef] [PubMed]
  6. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D18(2), 191–196 (2002). [CrossRef]
  7. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys.13(2), 025012 (2011). [CrossRef]
  8. P. M. Intallura, M. B. Ward, O. Z. Karimov, Z. L. Yuan, P. See, A. J. Shields, P. Atkinson, and D. A. Ritchie, “Quantum key distribution using a triggered quantum dot source emitting near 1.3 μm,” Appl. Phys. Lett.91(16), 161103 (2007). [CrossRef]
  9. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83(1), 33–80 (2011). [CrossRef]
  10. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, “Electrically driven telecommunication wavelength single-photon source,” Appl. Phys. Lett.90(6), 063512 (2007). [CrossRef]
  11. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett.6(3), 510–514 (2006). [CrossRef] [PubMed]
  12. T. Schröder, F. Gädeke, M. J. Banholzer, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys.13(5), 055017 (2011). [CrossRef]
  13. D. K. Harris, P. M. Allen, H. S. Han, B. J. Walker, J. Lee, and M. G. Bawendi, “Synthesis of cadmium arsenide quantum dots luminescent in the infrared,” J. Am. Chem. Soc.133(13), 4676–4679 (2011). [CrossRef] [PubMed]
  14. M. Barth, H. Bartelt, and O. Benson, “Fluid-filled optical fibers” in Handbook of Optofluidics, edts. A. R. Hawkins, H. Schmidt, CRC Press Tylor & Francis (2010).
  15. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express14(9), 4135–4140 (2006). [CrossRef] [PubMed]
  16. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  17. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006). [CrossRef] [PubMed]
  18. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett.90(19), 193504 (2007). [CrossRef]
  19. X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A27(5), 977–984 (2010). [CrossRef] [PubMed]
  20. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  21. V. Lesnyak, A. Lutich, N. Gaponik, M. Grabolle, A. Plotnikov, U. Resch-Genger, and A. Eychmüller, “One-pot aqueous synthesis of high quality near infrared emitting Cd1_xHgxTe nanocrystals,” J. Mater. Chem.19(48), 9147–9152 (2009). [CrossRef]
  22. H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, “From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable Surfactants,” Adv. Mater. (Deerfield Beach Fla.)15(10), 777–780 (2003). [CrossRef]
  23. E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006). [CrossRef]
  24. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express13(22), 9014–9022 (2005). [CrossRef] [PubMed]
  25. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluorescence,” Phys. Rev. Lett.39(11), 691–695 (1977). [CrossRef]
  26. D. Dorfs, T. Franzl, R. Osovsky, M. Brumer, E. Lifshitz, T. Klar, and A. Eychmüller, “Type-I and Type-II nanoheterostructures based on CdTe nanocrystals – a comparative study,” Small4, 1148–1153 (2008).
  27. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, “Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures,” J. Am. Chem. Soc.125(38), 11466–11467 (2003). [CrossRef] [PubMed]
  28. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007). [CrossRef] [PubMed]
  29. D. Oron, M. Kazes, and U. Banin, “Multiexcitons in type-II colloidal semiconductor quantum dots,” Phys. Rev. B75(3), 035330 (2007). [CrossRef]
  30. S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, “Nanorod heterostructures showing photoinduced charge separation,” Small3(9), 1633–1639 (2007). [CrossRef] [PubMed]
  31. D. Dorfs, A. Salant, I. Popov, and U. Banin, “ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system,” Small4(9), 1319–1323 (2008). [CrossRef] [PubMed]
  32. S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett.90(11), 111101 (2007). [CrossRef]
  33. P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11(1), 013017 (2009). [CrossRef]
  34. X. W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett.36(18), 3545–3547 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited