OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11548–11560

Finite element simulation of microphotonic lasing system

Chris Fietz and Costas M. Soukoulis  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11548-11560 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for performing time domain simulations of a microphotonic system containing a four level gain medium based on the finite element method. This method includes an approximation that involves expanding the pump and probe electromagnetic fields around their respective carrier frequencies, providing a dramatic speedup of the time evolution. Finally, we present a two dimensional example of this model, simulating a cylindrical spaser array consisting of a four level gain medium inside of a metal shell.

© 2012 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 9, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 30, 2012
Published: May 4, 2012

Chris Fietz and Costas M. Soukoulis, "Finite element simulation of microphotonic lasing system," Opt. Express 20, 11548-11560 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Böhringer and O. Hess, “A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. spatio-temporal dynamics,” Prog. Quantum Electron.32, 247–307 (2008). [CrossRef]
  2. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B79, 241104 (2009). [CrossRef]
  3. A. Fang, “Reducing the losses of optical metamaterials,” Ph.D. thesis, Iowa State University (2010).
  4. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt.12, 024013 (2010). [CrossRef]
  5. A. Fang, T. Koschny, and C. M. Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B82, 121102 (2010). [CrossRef]
  6. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105, 127401 (2010). [CrossRef] [PubMed]
  7. A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express19, 12688–12699 (2011). [CrossRef] [PubMed]
  8. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Phil. Trans. R. Soc. London Ser. A369, 3525–3550 (2011). [CrossRef]
  9. J. M. Hamm, S. Wuestner, K. L. Tsakmakidis, and T. Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett.107, 167405 (2011). [CrossRef] [PubMed]
  10. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15, 2622–2653 (2007). [CrossRef] [PubMed]
  11. J. A. Gordon and R. W. Ziolkowski, “CNP optical metamaterials,” Opt. Express16, 6692–6716 (2008). [CrossRef] [PubMed]
  12. A. E. Siegman, Lasers (University Science Books, 1986). See chapters 2, 3, and 6.
  13. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85, 70–73 (2000). [CrossRef] [PubMed]
  14. W. B. J. Zimmerman, Process Modelling and Simulation with Finite Element Methods (World Scientific, 2004).
  15. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (John Wiley & Sons, Inc., 2002).
  16. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003). [CrossRef] [PubMed]
  17. M. I. Stockman, “Spasers explained,” Nat. Photon.2, 327–329 (2008). [CrossRef]
  18. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antennas Propag.51, 2641–2651 (2003). [CrossRef]
  19. C. Fietz and G. Shvets, “Homogenization theory for simple metamaterials modeled as one-dimensional arrays of thin polarizable sheets,” Phys. Rev. B82, 205128 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited