OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11574–11580

First principles study of Bismuth alloying effects in GaAs saturable absorber

Dechun Li, Ming Yang, Shengzhi Zhao, Yongqing Cai, and Yuanping Feng  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11574-11580 (2012)
http://dx.doi.org/10.1364/OE.20.011574


View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

First principles hybrid functional calculations have been carried out to study electronic properties of GaAs with Bi alloying effects. It is found that the doping of Bi into GaAs reduces the bandgap due to the intraband level repulsions between Bi induced states and host states, and the Bi-related impurity states originate from the hybridization of Bi-6p and its nearest As-4p orbitals. With the increase of Bi concentration in GaAs, the bandgap decreases monotonously. The calculated optical properties of the undoped and Bi-doped GaAs are similar except the shift toward lower energy of absorption edge and main absorption peaks with Bi doping. These results suggest a promising application of GaBixAs1-x alloy as semiconductor saturable absorber in Q-switched or mode-locked laser.

© 2012 OSA

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.2220) Materials : Defect-center materials
(160.6000) Materials : Semiconductor materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Materials

History
Original Manuscript: March 28, 2012
Revised Manuscript: April 29, 2012
Manuscript Accepted: April 30, 2012
Published: May 4, 2012

Citation
Dechun Li, Ming Yang, Shengzhi Zhao, Yongqing Cai, and Yuanping Feng, "First principles study of Bismuth alloying effects in GaAs saturable absorber," Opt. Express 20, 11574-11580 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: a new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett.60(4), 419–421 (1992). [CrossRef]
  2. T. T. Kajava and A. L. Gaeta, “Q-switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett.21(16), 1244–1246 (1996). [CrossRef] [PubMed]
  3. J. Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng.35(5), 299–307 (2001). [CrossRef]
  4. J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode pumped Nd:YAG with GaAs output coupler,” Opt. Commun.165(4-6), 245–249 (1999). [CrossRef]
  5. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron.24(2), 289–303 (1988). [CrossRef]
  6. T. Tiedje, E. C. Young, and A. Mascarenhas, “Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides,” Int. J. Nanotechnol.5, 963–983 (2008). [CrossRef]
  7. A. R. Mohmad, F. Bastiman, C. J. Hunter, J. S. Ng, S. J. Sweeney, and J. P. R. David, “The effect of Bi composition to the optical quality of GaAs1−xBix,” Appl. Phys. Lett.99(4), 042107–042109 (2011). [CrossRef]
  8. K. Oe and H. Okamato, “New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys.37(Part 2, No. 11A), L1283–L1285 (1998). [CrossRef]
  9. K. Oe, “Characteristics of semiconductor alloy GaAs1-xBix,” Jpn. J. Appl. Phys.41(Part 1, No. 5A), 2801–2806 (2002). [CrossRef]
  10. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix.,” Phys. Rev. Lett.97(6), 067205–067208 (2006). [CrossRef] [PubMed]
  11. S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett.82(22), 3874–3876 (2003). [CrossRef]
  12. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, “Molecular beam epitaxy growth of GaAs1−xBix,” Appl. Phys. Lett.82(14), 2245–2247 (2003). [CrossRef]
  13. E. C. Young, M. B. Whitwick, T. Tiedje, and D. A. Beaton, “Bismuth incorporation in GaAs1−xBix grown by molecular beam epitaxy with in-situ light scattering,” Phys. Status Solidi4(5c), 1707–1710 (2007). [CrossRef]
  14. K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaBixAs1−x,” Appl. Phys. Lett.91(5), 051909–051911 (2007). [CrossRef]
  15. A. Janoti, S. H. We, and S. B. Zhang, “Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs,” Phys. Rev. B65(11), 115203 (2002). [CrossRef]
  16. Y. Zhang, Z. Mascarenhas, and L. W. Wang, “Similar and dissimilar aspects of III-V semiconductors containing Bi versus N,” Phys. Rev. B71(15), 155201 (2005). [CrossRef]
  17. D. Madouri, A. Boukra, A. Zaoui, and M. Ferhat, “Bismuth alloying in GaAs: a first-principles study,” Comput. Mater. Sci.43(4), 818–822 (2008). [CrossRef]
  18. A. Abdiche, H. Abid, R. Riane, and A. Bouaza, “Structural and electronic properties of zinc blend GaAs1-xBix solid solutions,” Physica B405(9), 2311–2316 (2010). [CrossRef]
  19. J. Hwang and J. D. Phillips, “Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs,” Phys. Rev. B83(19), 195327 (2011). [CrossRef]
  20. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys.123(17), 174101 (2005). [CrossRef] [PubMed]
  21. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci.6(1), 15–50 (1996). [CrossRef]
  22. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter54(16), 11169–11186 (1996). [CrossRef] [PubMed]
  23. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter50(24), 17953–17979 (1994). [CrossRef] [PubMed]
  24. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B59(3), 1758–1775 (1999). [CrossRef]
  25. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  26. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys.118(18), 8207–8219 (2003). [CrossRef]
  27. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys.125(22), 224106 (2006). [CrossRef] [PubMed]
  28. D. C. Li, M. Yang, Y. Q. Cai, S. Z. Zhao, and Y. P. Feng, “First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber,” Opt. Express20(6), 6258–6266 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited