OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A678–A683

Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light

Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A678-A683 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hydrogen generation through direct photoelectrolysis of water was studied using photoelectrochemical (PEC) cells made of Mn-doped GaN photoelectrodes. In addition to its absorption of the ultraviolet spectrum, Mn-doped GaN photoelectrodes could absorb photons in the visible spectrum. The photocurrents measured from PEC cells made of Mn-doped GaN were at least one order higher than those measured from PEC cells made of undoped GaN-working electrodes. Under the visible light illumination and a bias voltage below 1.2 V, the Mn-doped GaN photoelectrodes could drive the water splitting reaction for hydrogen generation. However, hydrogen generation could not be achieved under the same condition wherein undoped GaN photoelectrodes were used. According to the results of the spectral responses and transmission spectra obtained from the experimental photoelectrodes, the enhanced photocurrent in the Mn-doped GaN photoelectrodes, compared with the undoped GaN photoelectrodes, was attributable to the Mn-related intermediate band within the band gap of GaN that resulted in further photon absorption.

© 2012 OSA

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.4925) Thin films : Other properties (stress, chemical, etc.)
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Fuel

Original Manuscript: May 31, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: July 31, 2012
Published: August 3, 2012

Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, "Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light," Opt. Express 20, A678-A683 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972). [CrossRef] [PubMed]
  2. A. J. Nozik, “Electrode materials for photoelectrochemical devices,” J. Cryst. Growth39(1), 200–209 (1977). [CrossRef]
  3. R. C. Kainthla and B. Zelenay, “Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis,” J. Electrochem. Soc.134(4), 841–845 (1987). [CrossRef]
  4. A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem.100(31), 13061–13078 (1996). [CrossRef]
  5. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett.91(9), 093519 (2007). [CrossRef]
  6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett.80(25), 4741 (2002). [CrossRef]
  7. K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys.44(18), L543– L545 (2005). [CrossRef]
  8. W. Luo, B. Liu, Z. Li, Z. Xie, D. Chen, Z. Zou, and R. Zhang, “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett.92(26), 262110 (2008). [CrossRef]
  9. J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett.93(16), 162107 (2008). [CrossRef]
  10. K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-edge energies and photoelectrochemical properties of n-Type AlxGa1−xN and InyGa1−yN alloys,” J. Electrochem. Soc.154(2), B175–B179 (2007). [CrossRef]
  11. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett.96(5), 052110 (2010). [CrossRef]
  12. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007). [CrossRef]
  13. J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys. Condens. Matter14(22), R657–R702 (2002). [CrossRef]
  14. I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett.73(12), 1634–1636 (1998). [CrossRef]
  15. S. Y. Liu, J. K. Sheu, J. C. Ye, S. J. Tu, C. K. Hsu, M. L. Lee, C. H. Kuo, and W. C. Lai, “Characterization of n-GaN with naturally textured surface for photoelectrochemical hydrogen generation,” J. Electrochem. Soc.157(12), H1106–H1109 (2010). [CrossRef]
  16. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  17. A. Marti, C. Tablero, E. Antolin, A. Luque, R. P. Campion, S. V. Novikov, and C. T. Foxon, “Potential of Mn doped In1-xGaxN for implementing intermediate band solar cells,” Sol. Energy Mater. Sol. Cells93(5), 641–644 (2009). [CrossRef]
  18. A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. (Deerfield Beach Fla.)22(2), 160–174 (2010). [CrossRef] [PubMed]
  19. F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, W. C. Lai, W. C. Tsai, and W. H. Chang, “Optical properties of Mn in regrown GaN-based epitaxial layers,” Opt. Mater. Express2(4), 469–477 (2012). [CrossRef]
  20. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “Inductively Coupled Plasma Etching of GaN using Cl2/Ar and Cl2/N2 gases,” J. Appl. Phys.85(3), 1970–1974 (1999). [CrossRef]
  21. S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed indium tin oxide ohmic contacts,” Opt. Express19(S6Suppl 6), A1196–A1201 (2011). [CrossRef] [PubMed]
  22. M. L. Lee and J. K. Sheu, “GaN-based ultraviolet p-i-n photodiodes with buried p-layer structure grown by MOVPE,” J. Electrochem. Soc.154(3), H182–H184 (2007). [CrossRef]
  23. F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, and W. H. Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection,” Opt. Express19(S6Suppl 6), A1211–A1218 (2011). [CrossRef] [PubMed]
  24. M. L. Lee, J. K. Sheu, and Y. R. Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio,” Appl. Phys. Lett.92(5), 053506 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited