OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A694–A705

Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells

Narges F. Fahim, Baohua Jia, Zhengrong Shi, and Min Gu  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A694-A705 (2012)
http://dx.doi.org/10.1364/OE.20.00A694


View Full Text Article

Enhanced HTML    Acrobat PDF (2331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Crystalline silicon solar cells are predominant and occupying more than 89% of the global solar photovoltaic market. Despite the boom of the innovative solar technologies, few can provide a low-cost radical solution to dramatically boost the efficiency of crystalline silicon solar cells, which has reached plateau in the past ten years. Here, we present a novel strategy to simultaneously achieve dramatic enhancement in the short-circuit current and the fill factor through the integration of Ag plasmonic nanoparticles and nanoshells on the antireflection coating and the screen-printed fingers of monocrystalline silicon solar cells, respectively, by a single step and scalable modified electroless displacement method. As a consequence, up to 35.2% enhancement in the energy conversion efficiency has been achieved due to the plasmonic broadband light trapping and the significant reduction in the series resistance. More importantly, this method can further increase the efficiency of the best performing textured solar cells from 18.3% to 19.2%, producing the highest efficiency cells exceeding the state-of-the-art efficiency of the standard screen-printed solar cells. The dual functions of the Ag nanostructures, reported for the first time here, present a clear contrast to the previous works, where plasmonic nanostructures were integrated into solar cells to achieve the short-circuit current enhancement predominately. Our method offers a facile, cost-effective and scalable pathway for metallic nanostructures to be used to dramatically boost the overall efficiency of the optically thick crystalline silicon solar cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5140) Materials : Photoconductive materials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: July 6, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 13, 2012
Published: August 16, 2012

Citation
Narges F. Fahim, Baohua Jia, Zhengrong Shi, and Min Gu, "Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells," Opt. Express 20, A694-A705 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Neuhaus and A. Munzer, “Industrial silicon wafer solar cells,” Adv. Optoelectron.2007, 1–15 (2007). [CrossRef]
  2. Z. Wang, P. Han, H. Lu, H. Qian, L. Chen, Q. Meng, N. Tang, F. Gao, Y. Jia, J. Wu, Y. Fei, W. Wu, H. Zhu, J. Ji, Z. Shi, A. Sugianto, L. Mai, B. Hallam, and S. Wenham, “Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers,” Prog. Photovolt. Res. Appl.20(3), 260–268 (2012). [CrossRef]
  3. J. Zhao, A. Wang, and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Sol. Energy Mater. Sol. Cells65(1-4), 429–435 (2001). [CrossRef]
  4. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nat. Mater.11(3), 174–177 (2012). [CrossRef] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  8. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  9. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  10. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  11. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009). [CrossRef]
  12. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  13. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  14. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  15. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  16. N. F. Fahim, Z. Ouyang, Y. Zhang, B. Jia, Z. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express2(2), 190–204 (2012). [CrossRef]
  17. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells93(11), 1978–1985 (2009). [CrossRef]
  18. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Prog. Photovolt. Res. Appl.18, 500–504 (2010). [CrossRef]
  19. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.12(5), 2187–2192 (2012). [CrossRef] [PubMed]
  20. M. Hörteis, J. Bartsch, S. Binder, A. Filipovic, J. Merkel, V. Radtke, and S. W. Glunz, “Electrical properties of fine line printed and light-induced plated contacts on silicon solar cells,” Prog. Photovolt. Res. Appl.18, 240–248 (2010).
  21. H. Dong, R. Barr, and P. hinkley, “Inkjet plating resist for improved cell efficiency,” in proceedings of Photovoltaic Specialists Conference (PVSC) 35th IEEE2010, 002142–002146.
  22. N. Bay, G. Cimiotti, S. Kleinschmidt, N. Kӧsterke, A. Lӧsel, M. Sailer, A. Träger, H. Kühnlein, H. Nussbaumer, C. Fleischmann, and F. Granek, “Industrial LCP selective emitter solar cells with plated contacts,” in proceedings of Photovoltaic Specialists Conference (PVSC) 35th IEEE2010, 000667–000671.
  23. T. Nychyporuk, Z. Zhou, A. Fave, M. Lemiti, and S. Bastide, “Electroless deposition of Ag nanoparticles on the surface of SiNx: H dielectric layers,” Sol. Energy Mater. Sol. Cells94(12), 2314–2317 (2010). [CrossRef]
  24. A. E. Ershov, I. L. Isaev, P. N. Semina, V. A. Markel, and S. V. Karpov, “Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates,” Phys. Rev. B85(4), 045421 (2012). [CrossRef]
  25. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovolt: Res. Appl.19(8), 917–926 (2011). [CrossRef]
  26. M. A. Green, “Ag requirements for silicon wafer-based solar cells,” Prog. Photovolt. Res. Appl.19(8), 911–916 (2011). [CrossRef]
  27. J. A. Silva, M. Gauthier, C. Boulord, C. Oliver, A. Kaminski, B. Semmache, and M. Lemiti, “Improving front contacts of n-type solar cells,” Energy Procedia8, 625–634 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited