OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A706–A712

Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes

S. S. Lin, B. G. Chen, W. Xiong, Y. Yang, H. P. He, and J. Luo  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A706-A712 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

© 2012 OSA

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Light-Emitting Diodes

Original Manuscript: July 16, 2012
Manuscript Accepted: August 10, 2012
Published: August 20, 2012

S. S. Lin, B. G. Chen, W. Xiong, Y. Yang, H. P. He, and J. Luo, "Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes," Opt. Express 20, A706-A712 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science315(5817), 1379 (2007). [CrossRef] [PubMed]
  4. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008). [CrossRef] [PubMed]
  5. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  6. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett.105(26), 266601 (2010). [CrossRef] [PubMed]
  7. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  8. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science291(5510), 1947–1949 (2001). [CrossRef] [PubMed]
  9. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001). [CrossRef]
  10. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science335(6071), 947–950 (2012). [CrossRef] [PubMed]
  11. J. A. Lin, M. Penchev, G. P. Wang, R. K. Paul, J. B. Zhong, X. Y. Jing, M. Ozkan, and C. S. Ozkan, “Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers,” Small6(21), 2448–2452 (2010). [CrossRef] [PubMed]
  12. Y. J. Kim, A. Hadiyawarman, A. Yoon, M. Kim, G. C. Yi, and C. Liu, “Hydrothermally grown ZnO nanostructures on few-layer graphene sheets,” Nanotechnology22(24), 245603 (2011). [CrossRef] [PubMed]
  13. O. Akhavan, “Graphene nanomesh by ZnO nanorod photocatalysts,” ACS Nano4(7), 4174–4180 (2010). [CrossRef] [PubMed]
  14. Y. J. Kim, J. H. Lee, and G. C. Yi, “Vertically aligned ZnO nanostructures grown on graphene layers,” Appl. Phys. Lett.95(21), 213101 (2009). [CrossRef]
  15. Y. Ye, L. Gan, L. Dai, H. Meng, F. Wei, Y. Dai, Z. J. Shi, B. Yu, X. F. Guo, and G. G. Qin, “Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes,” J. Mater. Chem.21(32), 11760–11763 (2011). [CrossRef]
  16. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S. H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010). [CrossRef] [PubMed]
  17. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, “Graphene-based liquid crystal device,” Nano Lett.8(6), 1704–1708 (2008). [CrossRef] [PubMed]
  18. S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, and L. P. Zhu, “Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorod array,” J. Cryst. Growth306(2), 339–343 (2007). [CrossRef]
  19. E. Malic, C. Weber, M. Richter, V. Atalla, T. Klamroth, P. Saalfrank, S. Reich, and A. Knorr, “Microscopic Model of the Optical Absorption of Carbon Nanotubes Functionalized with Molecular Spiropyran Photoswitches,” Phys. Rev. Lett.106(9), 097401 (2011). [CrossRef] [PubMed]
  20. D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, “Polariton and free-exciton-like photoluminescence in ZnO,” Appl. Phys. Lett.79(23), 3794–3796 (2001). [CrossRef]
  21. S. S. Lin, H. P. He, Z. Z. Ye, B. H. Zhao, and J. Y. Huang, “Temperature-dependent photoluminescence and photoluminescence excitation of aluminum monodoped and aluminum-indium dual-doped ZnO nanorods,” J. Appl. Phys.104(11), 114307 (2008). [CrossRef]
  22. S. S. Lin, Z. Z. Ye, H. P. He, B. H. Zhao, L. P. Zhu, and J. Y. Huang, “Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition,” J. Appl. Phys.104(6), 064311 (2008). [CrossRef]
  23. S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, and Z. L. Wang, “Phosphorus doped Zn1-xMgxO nanowire arrays,” Nano Lett.9(11), 3877–3882 (2009). [CrossRef] [PubMed]
  24. D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, “Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO,” Phys. Rev. B81(11), 115304 (2010). [CrossRef]
  25. H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys.37(Part 1, No. 2), 550–553 (1998). [CrossRef]
  26. H. P. He, Y. J. Wang, J. R. Wang, and Z. Z. Ye, “Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures,” Phys. Chem. Chem. Phys.13(33), 14902–14905 (2011). [CrossRef] [PubMed]
  27. Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009). [CrossRef] [PubMed]
  28. J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys.51(8), 4260–4269 (1980). [CrossRef]
  29. S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, “Field electron emission from polycrystalline GaN nanorods,” J. Ceramic. Proc. Res.6, 245–249 (2005).
  30. Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science312(5771), 242–246 (2006). [CrossRef] [PubMed]
  31. F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)19(19), 2935–2940 (2007). [CrossRef]
  32. G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: Excited state interactions between ZnO nanoparticles and graphene oxide,” Langmuir25(24), 13869–13873 (2009). [CrossRef] [PubMed]
  33. T. Ando and M. Koshino, “Field effects on optical phonons in bilayer graphene,” J. Phys. Soc. Jpn.78(3), 034709 (2009). [CrossRef]
  34. D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. J. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol.7(7), 465–471 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited