OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A740–A753

Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode

Eungkyu Lee and Changsoon Kim  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A740-A753 (2012)
http://dx.doi.org/10.1364/OE.20.00A740


View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a systematic analysis of enhanced short-circuit current density (Jsc) in organic solar cells (OSCs) where one metallic electrode is optically thick and the other consists of a two-dimensional metallic crossed grating. By examining a model device representative of such surface plasmon (SP)-enhanced OSCs by the Fourier modal and finite-element methods for electromagnetic and exciton diffusion calculations, respectively, we provide general guidelines to maximize Jsc of the SP-enhanced OSCs. Based on this study, we optimize the performance of a small-molecule OSC employing a copper phthalocyanine–fullerene donor–acceptor pair, demonstrating that the optimized SP-enhanced device has Jsc that is 75 % larger than that of the optimized device with an ITO-based conventional structure.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: July 19, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 24, 2012
Published: August 29, 2012

Citation
Eungkyu Lee and Changsoon Kim, "Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode," Opt. Express 20, A740-A753 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428, 911–918 (2004). [CrossRef] [PubMed]
  2. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324, 232–235 (2009). [CrossRef] [PubMed]
  3. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3, 649–653 (2009). [CrossRef]
  4. M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. (Oxford University Press, 1999).
  5. I. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett.327, 181–188 (2000). [CrossRef]
  6. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys.93, 3693–3723 (2003). [CrossRef]
  7. S. Cook, A. Furube, R. Katoh, and L. Han, “Estimate of singlet diffusion lengths in PCBM films by time-resolved emission studies,” Chem. Phys. Lett.478, 33–36 (2009). [CrossRef]
  8. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater.20, 3516–3520 (2008). [CrossRef]
  9. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS. Bull.30, 28–32 (2005). [CrossRef]
  10. C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express16, 19987–19994 (2008). [CrossRef] [PubMed]
  11. J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys.107, 053117 (2010). [CrossRef]
  12. H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, and K.-T. Wong, “Device engineering for highly efficient top-illuminated organic solar cells with microcavity structures,” Adv. Mater.24, 2269–2272 (2012). [CrossRef] [PubMed]
  13. C. Kim, J.-Y. Lee, and P. Peumans, “Surface plasmon polariton assisted organic solar cells,” in Proceedings of NSTI-Nanotech 20081, 533–536 (2008).
  14. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008). [CrossRef]
  15. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18, A620–A630 (2010). [CrossRef] [PubMed]
  16. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96, 133302 (2010). [CrossRef]
  17. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19, A1202–A1210 (2011). [CrossRef] [PubMed]
  18. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004). [CrossRef]
  19. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells,” J. Mater. Chem.22, 1206–1211 (2012). [CrossRef]
  20. D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Energy Mater.1, 766–770 (2011). [CrossRef]
  21. J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic polymer tandem solar cell,” ACS Nano5, 6210–6217 (2011). [CrossRef] [PubMed]
  22. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999). [CrossRef]
  23. A. S. Grove, Physics and technology of semiconductor devices (John Wiley and Sons Inc, 1967).
  24. E. D. Palik, Handbook of optical constants of solids, 1st ed. (Academic Press, 1997).
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3, 1780–1787 (1986). [CrossRef]
  26. H. Kim, J. Park, and B. Lee, Fourier modal method and its applications in computational nanophotonics, 1st ed. (CRC Press, 2012).
  27. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A.14, 2758–2767 (1997). [CrossRef]
  28. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12, 1077–1086 (1995). [CrossRef]
  29. C. Zhou and L. Li, “Formulation of the Fourier modal method for symmetric crossed gratings in symmetric mountings,” J. Opt. A-Pure Appl. Op.6, 43–50 (2004). [CrossRef]
  30. COMSOL Multiphysics®, http://www.comsol.com .
  31. L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Org. Electron.3, 143–148 (2002). [CrossRef]
  32. M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett.89, 163515 (2006). [CrossRef]
  33. J. Lee, S.-Y. Kim, C. Kim, and J.-J. Kim, “Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures,” Appl. Phys. Lett.97, 083306 (2010). [CrossRef]
  34. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater.22, 3839–3856 (2010). [CrossRef] [PubMed]
  35. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6, 153–161 (2012). [CrossRef]
  36. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express20, 12213–12221 (2012). [CrossRef] [PubMed]
  37. P. Zilio, D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, “Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings,” Opt. Express20, A476–A488 (2012). [CrossRef] [PubMed]
  38. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Devices29, 300–305 (1982). [CrossRef]
  39. S. B. Mallick, M. Agrawal, and P. Peumans, “Optical light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18, 5691–5706 (2010). [CrossRef] [PubMed]
  40. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett.8(9), 491–493 (1983). [CrossRef] [PubMed]
  41. M. B. Duhring, N. A. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thin-film solar cells,” Appl. Phys. Lett.100, 211914 (2012). [CrossRef]
  42. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater.20, 4408–4413 (2008). [CrossRef]
  43. C. Kim, M. Shtein, and S. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic devices,” Appl. Phys. Lett.80, 4051–4053 (2002). [CrossRef]
  44. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrode,” Adv. Mater.22, 4378–4383 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited