OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A754–A764

Theoretical performance of multi-junction solar cells combining III-V and Si materials

Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A754-A764 (2012)
http://dx.doi.org/10.1364/OE.20.00A754


View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi-terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.0230) Optical devices : Optical devices
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: April 26, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 30, 2012
Published: August 29, 2012

Citation
Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison, "Theoretical performance of multi-junction solar cells combining III-V and Si materials," Opt. Express 20, A754-A764 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012). [CrossRef]
  2. D. J. Friedman, “Progress and challenges for next-generation high-efficiency multijunction solar cells,” Curr. Opin. Solid St. M.14(6), 131–138 (2010). [CrossRef]
  3. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, and K. M. Edmondson, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells94(8), 1314–1318 (2010). [CrossRef]
  4. J. F. Geisz, J. M. Olson, M. J. Romero, C. S. Jiang, and A. G. Norman, “Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE,” in Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion (Institute of Electrical and Electronics Engineers, Hawaii, 2006), 772–775 (2006).
  5. T. J. Grassman, M. R. Brenner, M. Gonzalez, A. M. Carlin, R. R. Unocic, R. R. Dehoff, M. J. Mills, and S. A. Ringel, “Characterization of Metamorphic GaAsP/Si Materials and Devices for Photovoltaic Applications,” IEEE Trans. Electron Dev.57(12), 3361–3369 (2010). [CrossRef]
  6. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth315(1), 37–47 (2011). [CrossRef]
  7. K. Hayashi, T. Soga, H. Nishikawa, T. Jimbo, and M. Umeno, “MOCVD growth of GaAsP on Si for tandem solar cell application,” in Proceedings of the 24th IEEE Photovoltaics Specialist Conference, (Institute of Electrical and Electronics Engineers, Hawaii, 1994) 1890–1893.
  8. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H.- Kanel, “Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells,” Semicond. Sci. Technol.21(6), 775–780 (2006). [CrossRef]
  9. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, “GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates,” Appl. Phys. Lett.92(10), 103503 (2008). [CrossRef]
  10. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, “Four‐junction spectral beam‐splitting photovoltaic receiver with high optical efficiency,” Prog. Photovolt. Res. Appl.19(1), 61–72 (2011). [CrossRef]
  11. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  12. S. R. Kurtz, P. Faine, and J. M. Olson, “Modeling of two-junction, series connected tandem solar cells using top-cell thickness as an adjustable parameter,” J. Appl. Phys.68(4), 1890–1895 (1990). [CrossRef]
  13. L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys.104(2), 024507 (2008). [CrossRef]
  14. K. Jandieri, S. D. Baranovskii, W. Stolz, F. Gebhard, W. Guter, M. Hermle, and A. W. Bett, “Fluctuations of the peak current of tunnel diodes in multi-junction solar cells,” J. Phys. D Appl. Phys.42(15), 155101 (2009). [CrossRef]
  15. NREL, “ASTM (G-173-03),” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  16. S. Adachi, Physical Properties of III–V Semiconductor Compounds (John Wiley and Sons, 1992).
  17. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, 1981).
  18. M. R. Brozel and G. E. Stillman, Properties of Gallium Arsenide (INSPEC, 1996).
  19. P. Bhattacharya, Properties of lattice-matched and strained Indium Gallium Arsenide (INSPEC, 1993).
  20. C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977). [CrossRef]
  21. R. J. Van Overstraeten and R. P. Mertens, “Heavy doping effects in Si,” Solid-State Electron.30(11), 1077–1087 (1987). [CrossRef]
  22. J. A. del Alamo and R. M. Swanson, “Modelling of minority-carrier transport in heavily doped silicon emitters,” Solid-State Electron.30(11), 1127–1136 (1987). [CrossRef]
  23. H. A. Zarem, J. A. Lebens, K. B. Nordstrom, P. C. Sercel, S. Sanders, L. E. Eng, A. Yariv, and K. J. Vahala, “Effect of Al mole fraction on carrier diffusion lengths and lifetimes in AlxGa1−xAs,” Appl. Phys. Lett.55(25), 2622–2624 (1989). [CrossRef]
  24. W. E. Chieh-Ting Lin, McMahon, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarria, M. Young, M. A. Steiner, R. M. Frances, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Fabrication of two-terminal metal-interconnected multijunction III-V solar cells,” in Proceedings of the 38th IEEE Photovoltaics Specialist Conference, (Institute of Electrical and Electronics Engineers, Texas, 2012).
  25. R. J. Boettcher, P. G. Borden, and P. E. Gregory, “The temperature dependence of the efficiency of an AlGaAs/GaAs solar cell operating at high concentration,” Electron Dev. Lett.2(4), 88–89 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited